

Upgrade Guide
CommerceDriver™ for Windows®
Version 2.27 to 2.30

CommerceDriver™ for Windows®

Making Payments a Snap* for Developers | Commerce Driver™ Windows® 2

CommerceDriver™ Upgrade Guide
EVO Snap* has release the v2.30 version of CommerceDriver™. This guide is designed to assist

partners in the migration process from integrations using v2.27 to v2.30 of CommerceDriver™.

Partners who were previously using the 2.27 libraries and who have been directed by their Snap*

Solutions Engineer to update their projects to version 2.30 will need to upgrade to the 2.30 version

of CommerceDriver™.

Enhancements & New Features

Terminal Service Management (TSM)

All CommerceDriver™ integrators upgrading to version 2.30 are required to support the new TSM

features in order to support updates to the Ingenico line of terminals, including the iCMP, iPP320,

and iPP350 terminals.

Terminals will receive updates periodically, and if an update is not applied to a terminal by the

associated deadline date, the terminal will be unable to transact until the update is installed.

For more information on the new TSM feature, please see the TSM User Guide.

Upgrade from .Net 4.5 to .Net 4.6

CommerceDriver upgraded from .Net 4.5 to .Net 4.6. This upgrade should not affect integration

and should not require any changes on behalf of integrators.

EVOCommerceDriverAPI

Constructor

The construction of the CommerceDriverController in v2.27 had no parameters, and instead

read values from the App.Config file. In v2.30, the constructor has been changed to take the

service key and the application profile ID so that it no longer relies on the App.Config file. The

original constructor is still available, but has been marked as obsolete. The new constructor will

continue to read values from the App.Config file if no service key or application profile ID is

passed in.

https://docs.evosnap.com/wp-content/uploads/2019/08/TSM-User-Guide-for-CD_WIN_External.pdf

CommerceDriver™ for Windows®

Making Payments a Snap* for Developers | Commerce Driver™ Windows® 3

Version Code Change

2.27 CommerceDriverController();

2.30
CommerceDriverController(string serviceKey, string appProfileId);

Events

Obsolete Events

Please note that the following methods have been marked as obsolete and should no longer be

used:

Assign Question public event AssignQuestionsEventHandler AssignQuestions;

Change Password public event ChangePasswordEventHandler ChangePassword;

Forgot Password public event ForgotPasswordEventHandler ForgotPassword;

Identity Login public event IdentityLoginEventHandler IdentityLogin;

Password Reset public event PasswordResetEventHandler PasswordReset;

New Events

These events have been added and should be subscribed to:

Response Returned

This event is called at the end of a transaction with all the response information from the

transaction.

public event ResponseReturnedEventHandler ResponseReturned;

CommerceDriver™ for Windows®

Making Payments a Snap* for Developers | Commerce Driver™ Windows® 4

Retrieve CVV

This event is called when running an AMEX MSR transaction, which requires the CVV number on

the card.

public event RetrieveCvvEventHandler RetrieveCvv;

Selected Terminal Changed

This event is called when the selected terminal has changed.

public event SelectedTerminalChangedEventHandler SelectedTerminalChanged;

Properties

Obsolete Properties

Please note that these properties have been marked as obsolete and should no longer be used:

 public ManufacturerDefinition Manufacturer { get; set; }

 public List<ManufacturerInfo> Manufacturers { get; }

 public List<ManufacturerDefinition> ManufacturerDefinitions { get; private set; }

 public List<Assembly> RegisteredAssemblies { get; private set; }

 public TerminalDefinition Terminal { get; set; }

 public TerminalSettings TerminalSettings { get; private set; }

 public string TerminalSummary { get; }

 public ITransactionHandler TransactionHandler { get; set; }

IsBankcardsSupported and IsGiftCardsSupported

These properties have been replaced by SelectedMerchantProfile.ServiceType:

 public bool IsBankcardsSupported { get; }

 public bool IsGiftcardsSupported { get; }

Service Descriptors

This property has been replaced by MerchantProfiles:

 public List<ServiceDescriptor> ServiceDescriptors { get; }

CommerceDriver™ for Windows®

Making Payments a Snap* for Developers | Commerce Driver™ Windows® 5

New Properties

These properties have been added and should be used:

Is QPS Supported

This property is true if Quick Payment Service is supported:

public bool IsQPSSupported { get; }

Default Merchant Profile ID

When logging in, this Merchant Profile ID will be set as the Selected Merchant Profile if it is

available:

public string DefaultMerchantProfileId { get; set; }

Merchant Profiles

This property provides a dictionary of available Merchant Profile ID and Merchant Profile pairs

that are associated with the logged in user:

public Dictionary<string, MerchantProfile> MerchantProfiles { get; }

Selected Merchant Profile

This is the current Merchant Profile that is being used when processing transactions:

public MerchantProfile SelectedMerchantProfile { get; }

Selected Terminal

This is the current terminal that is being used when processing transactions:

public ITerminalController SelectedTerminal { get; private set; }

CommerceDriver™ for Windows®

Making Payments a Snap* for Developers | Commerce Driver™ Windows® 6

Methods

New Methods

 Download and Apply Update

This method downloads and applies an update to the terminal and can be called at any time,

meaning merchants do not need to wait for an update to be available in order to make this call:

Please see the TSM User Guide for more information on downloading and applying terminal

updates.

public async Task<DownloadAndApplyResult> DownloadAndApplyUpdate(Action<ProgressMessage>

onProgressMessage)

Create Receipt

This method creates a receipt object with all the information needed to create a customized

receipt:

public Receipt CreateReceipt(TransactionResult result, TransactionResponse response,

TransactionRequest transactionData)

Email Receipt

This method emails a receipt of the specified transaction to the specified email address:

public bool EmailReceipt(string transactionId, string emailAddress)

Set QPS Supported

This method is used to set the SelectedMerchantProfile to support Quick Payment Service.

Note that SelectedMerchantProfile must be for Mexico for QPS to be supported:

public void SetQPSSupported(bool enabled)

https://docs.evosnap.com/wp-content/uploads/2019/08/TSM-User-Guide-for-CD_WIN_External.pdf

CommerceDriver™ for Windows®

Making Payments a Snap* for Developers | Commerce Driver™ Windows® 7

Set Selected Merchant Profile

This method sets the SelectedMerchantProfile based on the provided Merchant Profile Id:

public bool SetSelectedMerchantProfile(string id)

User Account Methods

These methods replaced older methods, or were created in order to simplify and add functionality

around user accounts. Most of these methods have both a synchronous and an asynchronous call,

so the method can be called according to the user’s threading needs.

Login

Version Code Change

2.27 public bool PerformIdentityLogin()

2.30

public GatewaySession Login(string userName, string password)

public async Task<GatewaySession> LoginAsync(string userName, string

password)

Logout

Version Code Change

2.27
public void PerformLogout()

2.30 public void Logout()

Get User Security Questions

Version Code Change

2.27 public bool PerformSecurityQuestions(string userName, string password)

CommerceDriver™ for Windows®

Making Payments a Snap* for Developers | Commerce Driver™ Windows® 8

2.30

public List<SecurityQuestion> GetUserSecurityQuestions()

public async Task<List<SecurityQuestion>> GetUserSecurityQuestionsAsync()

Forgot User Password

Version Code Change

2.27 public bool PerformForgotPassword()

2.30

public SecurityQuestionToken ForgotUserPassword(string userName)

public async Task<SecurityQuestionToken> ForgotUserPasswordAsync(string

userName)

Reset User Password

This method resets a user’s password after a question has been answered from

ForgotUserPassword(). An email will be sent to the user with a new temporary password.

Version Code Change

2.27 public bool ResetUserPassword(string userName, string token, string text)

2.30 public async Task<bool> ResetUserPasswordAsync(string userName, string token,

string text)

Change User Password

Version Code Change

2.27 public bool ChangeUserPassword(string email, string userName, string

newPassword, string oldPassword)

2.30 public async Task<bool> ChangeUserPasswordAsync(string email, string

userName, string newPassword, string oldPassword)

CommerceDriver™ for Windows®

Making Payments a Snap* for Developers | Commerce Driver™ Windows® 9

Get User Password Expiration

Version Code Change

2.27 public DateTime? GetUserPasswordExpiration(string userName, string password)

2.30 public async Task<DateTime?> GetUserPasswordExpirationAsync(string userName,

string password)

Get Available Questions

Version Code Change

2.27 public List<SecurityQuestion> GetAvailableSecurityQuestions()

2.30 public async Task<List<SecurityQuestion>>

GetAvailableSecurityQuestionsAsync()

Update User Security Questions

Version Code Change

2.27 public bool UpdateUserSecurityQuestions(string userName, string password,

List<SecurityAnswer> securityAnswers)

2.30 public async Task<bool> UpdateUserSecurityQuestionsAsync(string userName,

string password, List<SecurityAnswer> securityAnswers)

Terminal Management

These methods were created to simplify terminal management and allow multiple terminals to be

added, selected, used, and removed.

Add a Terminal

In order to add a new terminal, one of the methods in the

IngenicoTerminalControllerFactoryClass will need to be called to create the

ITerminalController object.

CommerceDriver™ for Windows®

Making Payments a Snap* for Developers | Commerce Driver™ Windows® 10

Version Code Change

2.27 public void SetTerminal(string manufacturerName, string terminalName, string

terminalConfigName)

2.30 public bool AddTerminal(ITerminalController terminal)

Select Terminal

In v2.27, there was no capability to have multiple terminals. Since v2.30 allows for multiple

terminals, a new terminal will need to be added using AddTerminal(ITerminalController

terminal) and then selected in order to be used.

Version Code Change

2.30 public bool SelectTerminal(string id)

Initialize Terminal

The InitializeTerminal method of the Commerce Driver object now provides information if an

update is available for the terminal currently in use. Users must be signed on to their instance of

CommerceDriver™ in order for the initialize terminal process to begin and for the terminal to

begin checking for updates. This sign on procedure can be found for each operating system in

their respective Quick Start Guides. After performing the steps to authenticate and add a terminal,

check the response from the InitializeSelectedTerminal() method to determine if updates

are available.

IMPORTANT! If a terminal has not downloaded the available terminal updates by the associated

deadline date, the terminal will be deactivated, preventing any future transactions.

Version Code Change

2.27 public async Task<bool> InitializeTerminal()

2.30 public async Task<InitializeTerminalResult> InitializeSelectedTerminal()

CommerceDriver™ for Windows®

Making Payments a Snap* for Developers | Commerce Driver™ Windows® 11

Get Terminal by ID

This method will return the terminal object associated with the terminal ID.

Version Code Change

2.30 public ITerminalController GetTerminalById(string id)

Get Terminals

This method will return a list of all the terminals that have been added.

Version Code Change

2.30 public List<ITerminalController> GetTerminals()

Disconnect Terminal

This method un-initializes the selected terminal.

Version Code Change

2.30 public void DisconnectTerminal()

Remove Terminal

This method removes the terminal from the list of added terminals. If the terminal being removed

is the current SelectedtTerminal, then the next terminal in the list will be set as the

SelectedTerminal.

Version Code Change

2.30
public bool RemoveTerminal(string id)

CommerceDriver™ for Windows®

Making Payments a Snap* for Developers | Commerce Driver™ Windows® 12

Check Terminal Connection

Version Code Change

2.30 public void CheckTerminalConnection()

Check Terminal Battery Level

This method has replaced the ProcessAsync() method that was used to check the battery level

in v2.27.

Version Code Change

2.27 public Task ProcessAsync(BatteryStatusOperationRequest request)

2.30 public void CheckTerminalBatteryLevel()

Start Terminal Transaction

This method can be used to start a terminal transaction with the selected terminal. The

ProcessAync() methods that use terminals to run a transaction can also be used.

Version Code Change

2.30
public void StartTerminalTransaction(TransactionRequest request)

Cancel Terminal Transaction

Version Code Change

2.27 public void CancelTransaction()

2.30 public void CancelTerminalTransaction()

CommerceDriver™ for Windows®

Making Payments a Snap* for Developers | Commerce Driver™ Windows® 13

Print Receipt

This method will print a receipt if the terminal supports print receipting.

Version Code Change

2.30 public PrintStatus PrintReceipt(Receipt receipt, bool isMerchantCopy)

ProcessAsync Methods

Battery Status

Version Code Change

2.27 public Task ProcessAsync(BatteryStatusOperationRequest request)

2.30 public void CheckTerminalBatteryLevel()

Removed Methods

All the StoredValue methods have been removed in v2.30 because StoredValue cards are not

currently supported by CommerceDriver™.

public Task ProcessAsync(StoredValueRedeemOperationRequest request)

public Task ProcessAsync(StoredValueAuthorizeCaptureOperationRequest request)

public Task ProcessAsync(StoredValueAuthorizeOperationRequest request)

public Task ProcessAsync(StoredValueManageAccountActivateOperationRequest request)

public Task ProcessAsync(StoredValueManageAccountBalanceTransferOperationRequest request)

public Task ProcessAsync(StoredValueManageAccountDeactivateOperationRequest request)

public Task ProcessAsync(StoredValueManageAccountReloadOperationRequest request)

public Task ProcessAsync(StoredValueManageAccountByIDReloadOperationRequest request)

CommerceDriver™ for Windows®

Making Payments a Snap* for Developers | Commerce Driver™ Windows® 14

public Task ProcessAsync(StoredValueUndoOperationRequest request)

The ReadMSROperationRequest method also has been removed and is no longer supported:

public Task ProcessAsync(ReadMsrOperationRequest request)

Verify

Verify is a transaction operation added to the CommerceDriver™ which can be used to validate a

card. The Verify operation will cause the terminal to prompt for a MSR card swipe.

CommerceDriverController Method Call
Task ProcessAsync(VerifyOperationRequest request)

VerifyOperationRequest
public class VerifyOperationRequest: TransactionRequest
 {
 #region Constructors

 public VerifyOperationRequest()

 public VerifyOperationRequest(TransactionRequest request) : base(request)

 #endregion

 #region Properties

 public ProcessOperation Operation { get; }

 #endregion

 #region Methods

 public void AddTransactionRequest(TransactionRequest request)

 public string ToString()

 #endregion
 }

Tokenization

Tokenization is the process of using a token to run what would typically be a card only transaction.

The EVO Snap* platform generates a unique token associated with a customer’s card that can be

used instead of the customer’s actual card to process a transaction.

CommerceDriver™ for Windows®

Making Payments a Snap* for Developers | Commerce Driver™ Windows® 15

How to Run a Tokenized Transaction

In order to run a tokenized transaction, the PaymentAccountDataToken property must be

populated with a valid payment token in the TransactionRequest.CardData field. If the

PaymentAccountDataToken is populated, then CommerceDriver™ will automatically run the

token and no card will be needed to process the transaction.

The transaction types that can use payment tokens are listed below:

 Authorize

 Authorize and Capture

 Return Unlinked

Where to Find the Payment Token

In the response of any transaction that uses a card, there will be a field called

PaymentAccountDataToken. The value in this field is specific to the card that was used in that

transaction and can be used to populate

TransactionRequest.CardData.PaymentAccountData in order to run another transaction for

that card.

Transactions that can return a PaymentAccountDataToken are listed below:

 Authorize

 Authorize and Capture

 Return Unlinked

 Verify

