

CommerceDriver™
Quick-Start Guide for Android™

CommerceDriver™ Quick-Start Guide for Android

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Android 2

EVO CommerceDriver™ .. 3

How It Works .. 3

Version Details ... 3

Compatibility .. 3

Integration .. 4

Authentication .. 4

Terminal Setup ... 6

Transaction Processing ... 8

Unsuccessful Calls ... 11

Reference Information .. 13

CommerceDriver™ Quick-Start Guide for Android

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Android 3

EVO CommerceDriver™
Adding EMV transaction processing to your POS system is easy with the pre-certified EVO

CommerceDriver™ SDK. The pre-certified CommerceDriver™ SDK installs alongside your software

application to add EMV transaction processing to your POS system. CommerceDriver™ facilitates

all transactional communication with the EVO Payments International global processing platforms

and approved hardware devices to isolate payment data and keep it separate from the software

application.

CommerceDriver™ is designed to support multiple terminal manufacturers while retaining a

common API. At startup, CommerceDriver™ detects the supported terminal

manufacturer(s)/models for processing Authorize, Authorize & Capture, and Return transactions.

How It Works
1. Create transaction data objects in your POS.

2. Pass the transaction data to CommerceDriver™.

3. CommerceDriver™ initiates terminal commands and gathers tender/EMV data to send to

the EVO Snap* Platform.

4. The EVO Snap* Platform returns a response to CommerceDriver™ with receipt details.

Version Details
 CommerceDriver™ - v2.29.0

 Supports EVO Snap* v2.1.29 Platform calls

 Supported Terminals – Ingenico ICMP via Bluetooth, Ingenico iPP320/iPP350 (Ethernet),

EVO ITM100 (Audio Jack), and EVO ITP200/ITP250

Compatibility
 CommerceDriver™ Framework – Android API Level 17+ (4.2 JellyBean)

Google Play Services

Google Play Services is required for Commerce Driver to work.

Check for Google Play Services in your application using GoogleApiAvailability.

https://developers.google.com/android/reference/com/google/android/gms/common/GoogleApiAvailability

CommerceDriver™ Quick-Start Guide for Android

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Android 4

Integration

Add to Project

To use CommerceDriver™ in Android, you must first add CommerceDriver™ to your project:

dependencies {

 implementation 'com.evosnap.android:commerce-driver:2.29.0'

 // OR

 // inspect pom.xml for additional dependencies

 implementation project(path: 'path-to-commerce-driver)

}

Initialize Instance
CommerceDriver commerceDriver = new CommerceDriver("applicationProfileId", "serviceKey");

Authentication

First Login

Prior to using CommerceDriver™ in full, the user must do the following:

 For a first time login with a temporary password, use

CommerceDriver.changePassword(String, String, String) method with the username,

temporary password, and a new password.

 Then, use the CommerceDriver.loginWithUsernameAndPassword(String, String) with your new

password.

Subsequent Login

On the first and subsequent login without a temporary password, there are a few account related

calls one should make to finish setting up the account:

 Check the password expiration with CommerceDriver.getUserExpiration(String, String)

 Check if the user has answered security questions with

CommerceDriver.getSecurityQuestions()

 If security questions haven’t been answered, get the list of available questions with

CommerceDriver.getAvailableSecurityQuestions()

 Set up security questions with CommerceDriver.updateSecurityQuestions(String, String,

List<SecurityAnswer>)

CommerceDriver™ Quick-Start Guide for Android

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Android 5

Login

try {

 CommerceDriver commerceDriver = new CommerceDriver("applicationProfileId", "serviceKey");

 LoginResponse response = commerceDriver.loginWithUsernameAndPassword("username", "password");

 // Success

} catch (SnapSessionError e) {

 // Something went wrong

} catch (SnapApiError e) {

 // An API error occurred

 ApiResponse error = e.getErrorResponse();

 // Look at the error to see what happened

} catch (SnapConnectionError e) {

 // A network problem occurred

} catch (SnapSyncAccountError e) {

 // A problem occurred when syncing your account

}

Security Questions

After login, it is important to make sure that security questions have been answered.

Security questions are used to recover forgotten or lost passwords. It is still possible to recover a

password if security questions are not set, however this process is longer and requires contacting

a customer support representative.

Check if Security Questions Have Been Answered

Use CommerceDriver.getSecurityQuestions() to get a list of questions that the user has

answered.

If the user has not answered a sufficient number of security questions, (e.g. 3), then they should

be prompted to answer security questions.

try {

 SecurityQuestionsResponse response = CommerceDriver.getSecurityQuestions();

 List<SecurityQuestion> questions = response.getQuestions();

 if (questions.size() >= RECOMMENDED_SECURITY_QUESTIONS_ANSWERED) {

 // user has answered an appropriate number of security questions

 } else {

 // user should be prompted to answer security questions

 }

} catch (SnapConnectionError e) {

 // a connection error occurred, maybe the network is down or similar

} catch (SnapApiError e) {

 // an api error occurred, maybe the user credentials were invalid

}

Get Available Questions to Answer

If the user needs to answer questions, the list of questions can be retrieved via

CommerceDriver.getAvailableSecurityQuestions():

try {

 SecurityQuestionsResponse response = CommerceDriver.getAvailableSecurityQuestions();

 List<SecurityQuestion> questions = response.getQuestions();

 if (questions.isEmpty()) {

 // something went wrong on the platform

 } else {

CommerceDriver™ Quick-Start Guide for Android

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Android 6

 // offer the security questions to the user to answer

 }

} catch (SnapConnectionError e) {

 // a connection error occurred, maybe the network is down or similar

} catch (SnapApiError e) {

 // an api error occurred, maybe the user credentials were invalid

}

Answer Security Questions

Once the user has selected security questions and answers, then

CommerceDriver.updateSecurityQuestions(String, String, List<SecurityAnswer>) can be called

to update:

try {

 List<SecurityAnswer> answers = // create a list of answered security questions for password retrieval

 UpdateSecurityQuestionsResponse response = CommerceDriver.updateSecurityQuestions("some_user", "some_pas

sword", answers);

 // security questions have been answered if no exception is thrown

} catch (SnapConnectionError e) {

 // a connection error occurred, maybe the network is down or similar

} catch (SnapApiError e) {

 // an api error occurred, maybe the user credentials were invalid

}

Password Expiring Soon

The user password expiration should be checked at each login. The password can be changed at

any time, but if the password is expiring relatively soon, then follow these steps:

 Offer the user to change the password via CommerceDriver.changePassword(String, String,

String).

 Logout with CommerceDriver.logout().

 Re-login with CommerceDriver.login(String, String) using the changed password.

Terminal Setup

Add a Terminal

Use CommerceDriver.addTerminal(Terminal) to add a terminal. If the terminal was added

successfully, the method will return true. Terminals are identified with an id, so each time a new

terminal is added, it must have a unique id or the CommerceDriver.addTerminal(Terminal) will

return false.

Terminal objects are created using separate terminal libraries.

Multiple terminals may be added.

CommerceDriver™ Quick-Start Guide for Android

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Android 7

boolean added = commerceDriver.addTerminal(aTerminal);

if (added) {

 // success

} else {

 // failure - a terminal with the given id may have already been added

}

Initialize The Terminal

Initialization is required prior to using a terminal. After adding a terminal with

CommerceDriver.addTerminal(Terminal) a call to

CommerceDriver.initializeTerminal(InitializeTerminalRequest) should be made to initialize the

terminal.

No other requests to the terminal can be made if the initialization call is not made:

commerceDriver.initializeTerminal(myInitializeTerminalRequest);

Selecting Terminals

Use CommerceDriver.selectTerminal(String) to select a terminal after it has been added. If multiple

terminals were added with CommerceDriver.addTerminal(Terminal) then this method is how one

would change terminals.

Using Terminals

Requests to terminals have a listener as part of the request to receive the results of the request.

See below for available requests to the terminal:

Check the Battery

If a terminal has a battery, then the CommerceDriver.checkBatteryStatus(CheckBatteryRequest)

may be called to check the battery level.

Check the Connectivity

To check if a connection can be made to the terminal, use the

CommerceDriver.checkTerminalConnection(CheckConnectionRequest) method.

Printing

CommerceDriver.printJob(PrintJobRequest) can be used to print a transaction receipt or similar.

Not all terminals support printing.

Cancelling

Terminal requests may be flagged for cancellation with CommerceDriver.cancelRequest().The

request and the current state of the request will dictate if a cancellation is honored.

CommerceDriver™ Quick-Start Guide for Android

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Android 8

Shutting Down

To safely close a terminal connection and instance, a call to

CommerceDriver.shutdownTerminal(ShutdownTerminalRequest) should be made. If the request

succeeds, then the terminal should no longer be used, and the terminal should be removed

from CommerceDriver™ via CommerceDriver.removeTerminalById(String).

Transaction Processing
Two transaction sets can be processed using CommerceDriver™.

1. Terminal Required Transactions

 Authorize

 Authorize and Capture

 Return Unlinked

2. No Terminal Required Transactions

 Undo

 Capture

 Return by ID

Transaction Setup

Setting up the PosRequestBuilder correctly is required for a transaction via terminal to start.

Transaction data can be set using the PosRequestBuilder and an event listener must be

implemented to respond to various events that may occur during the course of a transaction.

Starting a Transaction

Transactions can be started by calling commerceDriver.startTerminalTransaction(builder.build()).

The following example demonstrates how to start a transaction.

1. Initialize PosRequestBuilder as the type of transaction to be run, e.g. Authorize and Capture.

try {

 PosRequestBuilder builder = PosRequestBuilder.newAuthorizeAndCaptureRequest()

2. Next, populate the transaction with the transaction data.

try {

 PosRequestBuilder builder = PosRequestBuilder.newAuthorizeAndCaptureRequest()

builder.setAmount(10.00);

 builder.setTransactionDateTime(new Date());

 builder.setTransactionEventListener(myTransactionEventListener);

CommerceDriver™ Quick-Start Guide for Android

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Android 9

3. Finally, the CommerceDriver™ class calls a generic startTerminalTransaction and passes it

the builder’s build output from builder.build(). Any errors thrown from the transaction

are also caught here.

try {

 PosRequestBuilder builder = PosRequestBuilder.newAuthorizeAndCaptureRequest()

builder.setAmount(10.00);

 builder.setTransactionDateTime(new Date());

 builder.setTransactionEventListener(myTransactionEventListener);

commerceDriver.startTerminalTransaction(builder.build());

 // Listen for callbacks!

} catch (SnapValidationError e) {

 // Commerce Driver didn't like something with the transaction!

} catch (SnapTerminalError e) {

 // The terminal didn't like something with the transaction!

} catch (SnapSessionError e) {

 // Your session might be expired! Time to log in again!

}

Transaction Data

For the initial implementation, there are only a few pieces of transaction data that should be set.

Recall that the user must first declare and initialize a PosRequestBuilder (referred to as builder

below) before calling the methods below. Please see the “Starting a Transaction” section above for

more information.

Method Description

builder.setAmount(double)

Sets the total tranasaction amount

(including tax, cash back, etc.)

builder.setCustomerPresent(CustomerPresent) Sets the customer presence – most cases

will be CustomerPresent.Present

builder.setProcessAsCredit() Sets the processing type to “Credit”

builder.setProcessAsDebit() Sets the processing type to “Debit”

CommerceDriver™ Quick-Start Guide for Android

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Android 10

builder.setEmployeeId(String)

Sets the Employee ID using the POS for the

transaction

builder.setOrderNumber(String) Sets the Order ID for the transaction

builder.setLaneId(String) Sets the Lane ID for the transaction

builder.setReference(String) Sets the reference for the transaction

builder.setTransactionDateTime(Date)

Sets the transaction date –

Note: in most cases, date can be passed as

newDate()

builder.setTransactionEventListener(TransactionEventListener)

Sets the Event Listener. More information

about Events can be found in the Event

section below.

Events

The TransactionEventListener is the observer that must set on a PosRequestBuilder to properly

execute a transaction via a terminal. The methods are called on the UI thread unless the

TransactionRequestBuilder.setHandler(Handler) is called.

Below are the methods that are called on the TransactionEventListener:

Method Description Recommended Action

TransactionEventListener.onReques

tSignatureConfirmation(ConfirmSig

natureRequest)

Called if a signature should be

collected and confirmed by the POS

Display a signature dialog and

collect signature.

TransactionEventListener.onReques

tFinalConfirmation(FinalConfirmat

ionRequest)

Called if a final confirmation must

be made by the POS, as opposed to

the terminal

Display a final confirmation dialog

with the amount.

CommerceDriver™ Quick-Start Guide for Android

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Android 11

TransactionEventListener.onReques

tApplicationSelection(Application

SelectionRequest)

Called if application selection must

be made by the POS, as opposed to

the terminal

Display an application selection

dialog.

TransactionEventListener.onReques

tConfirmCardRemoved(ConfirmCardRe

movedRequest)

Called if the POS should ensure a

card has been removed from the

terminal

None required

TransactionEventListener.onTransa

ctionNotification(TransactionNoti

fication)

Called when an event occurs during

a transaction
None required

TransactionEventListener.onCardRe

ad(CardReadData)

Called when card data is read, (e.g.

– masked PAN, card type)
None required

TransactionEventListener.onReques

tApDupeOverride(ApDupeOverrideReq

uest)

Called when a transaction is a

duplicate and the POS can override

to allow the duplicate transaction to

finish processing

None required

TransactionEventListener.onTransa

ctionCompleted(TransactionComplet

edData)

Called when a transaction is

completed, (e.g. – approved,

declined, cancelled, error, etc.)

Display a dialog with the result and

receipt options, (e.g. – email, print,

etc.)

TransactionEventListener.

onRequestCVV(RequestCVVHandler)

Called when a transaction requires

a CVV
Collect the CVV

Verify

Verify is a transaction operation added to the CommerceDriver™ which can be used to validate a

card. The Verify operation w ill trigger a MSR swipe transaction on the connected terminal with

empty transaction fields (no amount, merchantID, etc.).

Creating a Verify Request Example
try {

 VerifyRequest builder = PosRequestBuilder.newerifyRequest();

 builder.setTransactionEventListener(myTransactionEventListener);

 commerceDriver.startTerminalTransaction(builder.build());

 // Listen for callbacks!

 } catch (SnapValidationError e) {

 // Commerce Driver didn't like something with the transaction!

 } catch (SnapTerminalError e) {

 // The terminal didn't like something with the transaction!

CommerceDriver™ Quick-Start Guide for Android

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Android 12

 } catch (SnapSessionError e) {

 // Your session might be expired! Time to log in again!

}

Tokenization

Tokenization is the process of using a token to run what would typically be a card only transaction.

The EVO Snap* platform generates a unique token associated with a customer’s card that can be

used instead of the customer’s actual card to process a transaction.

How to Run a Tokenized Transaction

In order to run a tokenized transaction, the PaymentAccountDataToken property must be populated

with a valid payment token through the transacion builder `PosRequestBuilder builder =

PosRequestBuilder.newPaymentTokenRequest()`. If the PaymentAccountDataToken is populated,

CommerceDriver™ will automatically run the token and no card will be needed to process the

transaction.

The transaction types that can use payment tokens are listed below:

 Authorize

 Authorize and Capture

 Return Unlinked

Authorize And Capture with Tokenization Example
try {

 PosRequestBuilder builder = PosRequestBuilder.newPaymentTokenRequest()

 builder.setAmount(10.00);

 builder.setPaymentAccountDataToken(DATA_TOKEN);

 builder.setTransactionDateTime(new Date());

 builder.authorizeAndCapture();

 builder.setTransactionEventListener(myTransactionEventListener);

 commerceDriver.startTerminalTransaction(builder.build());

 // Listen for callbacks!

 } catch (SnapValidationError e) {

 // Commerce Driver didn't like something with the transaction!

 } catch (SnapTerminalError e) {

 // The terminal didn't like something with the transaction!

 } catch (SnapSessionError e) {

 // Your session might be expired! Time to log in again!

}

Unsuccessful Calls
When executing “terminal” methods, or calls to login, security related calls, etc., it is possible that

an error can occur.

CommerceDriver™ Quick-Start Guide for Android

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Android 13

Common Exception Reasons

Exceptions can typically occur for the following reasons:

 SnapConnectionError is thrown when a network call fails

 SnapSessionError is thrown when a session is expired or invalid and/or a login is required

 SnapApiError thrown when the platform responds with an API Error

o SnapApiError.getErrorResponse() may provide the error response along with an

error code

Common API Error Codes

If a SnapApiError is thrown, SnapApiError.getErrorResponse() may return an ApiResponse containing

error details. ApiResponse.getErrorId() can return a numeric code indicating the reason for the

API Error.

Below are common API Errors when performing any of the calls listed above:

Error ID Definition Resolution

406 User credentials invalid
Use valid credentials when calling CommerceDriver.login(String,

String)

5001 Password change required
Change password using CommerceDriver.changePassword(String,

String, String)

5002
Account locked – too many

invalid logins
Contact your Solutions Engineer

5003
Account locked –

Administrative Lock
Contact Snap* Customer Support

5004
Account locked – Password is

Expired

Change password using CommerceDriver.changePassword(String,

String, String)

Reference Information
For additional information, please visit the EVO Snap* Support site at

http://www.evosnap.com/support/ or contact your EVO Technical Support representative.

http://www.evosnap.com/support/

