CommerceDriver™
Quick-Start Guide for Windows®

CommerceDriver™ Quick-Start Guide for Windows®

EVO COMMEICEDIIVEI™ ... sb s besne s 3
HOW TEWOTKS ..ttt b s bbbt s b s b b e s b s b s b e s b e sb e s b e sbesbesbesbesbeebesbeebeeaeenes 3
VEISION DELAIIS ..ttt et b et s b et b et b et bbb et nr e 3
COMIPATIDITITY ceeeeeeeeee et b s bbb bbbt bt s b bbb 3
a1 e=7={ = U To] o IO OO OO OO PP SR P OO POTPOP PP RRPIPPRUPPPRRPO 4
AUTNENTICATION ...ttt b s bbb s b e bt s b s bt s b e e b s b e s be s b e ebesbeebeeaeeseebeenes 5
TEITNINGAI SEEUP vttt sttt st s bbb s b e s b e s besbe s b e e besbesbesbesbesbesbeebesbesbesbesbessesaesaes 5
TrANSACHION PrOCESSING .c..iiiiiieieieetestete ettt et h e sa e s bt s b e sb e s b e e b e sbe e bessbesbesanenbeeanens 5
COTE ASSEIMDIIES ..ottt b et b e bbbt et b et b et et e b et e bt st et e bt e st sb e e enenbens 8
SUPPIEMENTAIY FIlES ..ottt b s bbb s bbb sbesbesbesbesbesbesaeeneas 9
ReferenCe INFOIMIATION....c.ciiieeee ettt et b et b e e sae e 9

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Windows® n

BP Shap*

CommerceDriver™ Quick-Start Guide for Windows®

EVO CommerceDriver™

Adding EMV transaction processing to your POS system is easy with the pre-certified EVO
CommerceDriver™ SDK. The pre-certified CommerceDriver™ SDK installs alongside your software
application to add EMV transaction processing to your POS system. CommerceDriver™ facilitates
all transactional communication with the EVO Payments International global processing platforms
and approved hardware devices to isolate payment data and keep it separate from the software
application.

CommerceDriver™ is designed to support multiple terminal manufacturers while retaining a
common API. At startup, CommerceDriver™ detects the supported terminal
manufacturer(s)/models for processing Authorize, Authorize & Capture and Return transactions.

How It Works

1. Create transaction data objects in your POS.
2. Pass the transaction data to CommerceDriver™,

3. CommerceDriver™ initiates terminal commands and gathers tender/EMV data to send to
the EVO Snap* Platform.

4. The EVO Snap* Platform returns a response to CommerceDriver™ with receipt details.

Version Details

* CommerceDriver™ -v2.29.0

* EVOSnap* Web Services - v2.1.29 (Platform calls)

* Supported Terminal - Ingenico ICMP via Serial USB, Ingenico iPP320/iPP350 via Serial USB,
BBPOS Wisepad 2/Wisepad 2+ via Bluetooth

Compatibility

* CommerceDriver™ Framework - Windows® 7+
* Visual Studio 2015
* .Net4.5

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Windows® n

BP Shap*

CommerceDriver™ Quick-Start Guide for Windows®

Integration

To get started with CommerceDriver™, select your Platform, Network and Hardware. The setup is
similar to a direct Web Services integration, but CommerceDriver™ must be hosted locally.

For our example, the following setup uses the EVOSnap* assembly for interacting with /ngenico
terminals. The EvoSnap.CommerceDriver.Ingenico.dll assembly must be placed in the same folder
as CommerceDriver™.

1. Download the CommerceDriver™ SDK based on Terminal Manufacturer.
2. Uncompress the archive into a temporary folder.
3. Copy the following files into the folders associated with your solution:
* EvoSnap.CommerceDriver.Common.dll
* EvoSnap.CommerceDriver.Ingenico.dll
* EvoSnap.CommerceDriver.IntegratedTerminals.dll
* Newtonsoft.Json.dll
* RBA_SDK.dll
* RBA_SDK_CS.dll
4. Add the assembly references to the solution for the following files:
* EvoSnap.CommerceDriver.Common.dll
5. Place the assemblies below into an associated \bin\debug output folder. (The assemblies
above depend on the following assemblies.)
* RBA_SDK.dll
* RBA_SDK_CS.dll
6. Use the (EvoSnap.CommerceDriver.Common.Controllers) CommerceDriverController class to
create an instance and wire up the default event handlers.

// Instantiate the controller and define the logging info
Controller = new CommerceDriverController();
Controller.LogInstanceName = "TCOO1";
Controller.LogInstanceID = 1;

Controller.LoglLevel = LoglLevel.Trace;

// Wire up general event handlers

Controller.Log += Controller_Log;

Controller.Notification += Controller_Notification;
Controller.GenerateReceipt += Controller_GenerateReceipt;
Controller.ConfirmSignature += Controller_ConfirmSignature;
Controller.ServiceInvoked += Controller_ServiceInvoked;
Controller.Completed += Controller_Completed;
Controller.RetrieveCvv += Controller_RetrieveCvv;

// Create an instance which contains the default password event handlers
Handlers = new DefaultEventHandlers(Controller);

// Wire up the password specific event handlers using the default ones
Controller.IdentityLogin += Handlers.Default_IdentitylLogin;
Controller.ChangePassword += Handlers.Default_ChangePassword;
Controller.PasswordReset += Handlers.Default_PasswordReset;
Controller.ForgotPassword += Handlers.Default_ForgotPassword;

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Windows®

BP Shap*

CommerceDriver™ Quick-Start Guide for Windows®

Controller.AssignQuestions += Handlers.Default_AssignQuestions;

Controller.AccountNotification += Handlers.Default_AccountNotification;

Authentication

Call Login() or LoginAsync() in the CommerceDriverController using a username and password:

GatewaySession session = CommerceDriver.Login(“UserName”, “Password”);

Terminal Setup

1. Initialize the CommerceDriverController:

try

// Call the Initialize() method to load the manufacturer/terminal information
Controller.Initialize();
}

catch (Exception ex)

// An exception can be raised if a DLL or one of its dependancies are not found
LaunchExceptionDialog(ex);

2. Based on the terminal brand, use BbposTerminalControllerFactory or
IngenicoTerminalControllerFactory to create an ITerminalController object:

ITerminalController controller = IngenicoTerminalControllerFactory.CreateIcmpController(ComPort.COM1,
ConnectionTypes.Serial);

3. Call AddTerminal() in CommerceDriverController with the ITerminalController object
created in Step 2:

CommerceDriver.AddTerminal(controller);

Note: The first terminal added will automatically be set as the SelectedTerminal. The SelectedTerminal can
be changed using SelectTerminal in CommerceDriverController.

4. Initialize the terminal by calling InitializeSelectedTerminal in CommerceDriverController:

bool result = await CommerceDriver.InitializeSelectedTerminal();

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Windows®

BP Shap*

CommerceDriver™ Quick-Start Guide for Windows®

Transaction Processing

Two transaction sets can be processed using CommerceDriver™.

Terminal Required Transactions
* Authorize
* Authorize and Capture
* Return Unlinked

No Terminal Required Transactions
* Undo

* Capture
* Return by ID

1. Compose a request object to authorize and capture a transaction for $10.00.

AuthorizeCaptureOperationRequest request = new AuthorizeCaptureOperationRequest();
request.Amount = 10.00m;

request.Employeeld = "1234";

request.LaneId = "1";

request.OrderNumber = "7724";

request.Reference = "98106";

request.TipAmount = 0;

request.CashbackAmount = 0;

request.OverrideApDupe = false;

2. Invoke the Request.

await Controller.ProcessAsync(request);

Note: At first invocation, the user is asked to login via the IdentityLogin event. All dialogs
presented are from DefaultEventHandlers instance.

3. The Completed event contains the processing results. (Requires successful login and
completed transaction processing.)

private void Controller_Completed(object sender, CompletedEventArgs e)

{

switch (e.OperationResponse.Type)

{
case OperationType.AuthorizeCapture:

AuthorizeCaptureOperationResponse response = e.OperationResponse as

AuthorizeCaptureOperationResponse;

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Windows® n

BP Shap*

CommerceDriver™ Quick-Start Guide for Windows®

// response.Request -- Contains the original request

// response.Responses -- All communication with EvoSnap web services
// response.TransactionResult -- Approved, Declined etc

// response.TransactionResponse - Transaction response detail

break;

Verify

Verify is a transaction operation added to the CommerceDriver™ which can be used to validate a
card. The Verify operation will cause the terminal to prompt for a MSR card swipe.

CommerceDriverController Method Call

Task ProcessAsync(VerifyOperationRequest request)

VerifyOperationRequest

public class VerifyOperationRequest: TransactionRequest
¢ #region Constructors
public VerifyOperationRequest()
public VerifyOperationRequest(TransactionRequest request) : base(request)
#endregion
#region Properties
public ProcessOperation Operation { get; }
#endregion
#region Methods
public void AddTransactionRequest(TransactionRequest request)

public string ToString()

#endregion

Tokenization

Tokenization is the process of using a token to run what would typically be a card only transaction.
The EVO Snap* platform generates a unique token associated with a customer’s card that can be
used instead of the customer’s actual card to process a transaction.

How to Run a Tokenized Transaction

In order to run a tokenized transaction, the PaymentAccountDataToken property must be
populated with a valid payment token in the TransactionRequest.CardData field. If the

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Windows®

CommerceDriver™ Quick-Start Guide for Windows® E\‘/) Snap?%’

PaymentAccountDataToken is populated, then CommerceDriver™ will automatically run the
token and no card will be needed to process the transaction.

The transaction types that can use payment tokens are listed below:

* Authorize
* Authorize and Capture
* Return Unlinked

Where to Find the Payment Token

In the response of any transaction that uses a card, there will be a field called
PaymentAccountDataToken. The value in this field is specific to the card that was used in that
transaction and can be used to populate
TransactionRequest.CardData.PaymentAccountData in order to run another transaction for
that card.

Transactions that can return a PaymentAccountDataToken are listed below:

* Authorize
* Authorize and Capture
* Return Unlinked

* Verify

Default Dialogs/Event Handlers

To simplify the implementation process, default dialogs and associated event handlers are
included in the SDK. EVO Snap* highly recommends using the default event handlers for the
initial connection to the Platform Services to ensure the password change dialogs are in place. A
successful password change is required for the user account to process requests.

The sample code above utilizes the default event handlers, but custom dialogs can be created.

For additional information, please refer to the CommerceDriver™ Technical Reference Guide for
Windows®.

Core Assemblies

* EvoSnap.CommerceDriver.Common.dll - An assembly containing common code and
data models as well as the main CommerceDriverController class.

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Windows® n

BP Shap*

CommerceDriver™ Quick-Start Guide for Windows®

* Newtonsoft.Json.dll - An assembly containing code required for serializing/de-serializing
JSON models for REST request and responses.

Supplementary Files

* EvoSnap.CommerceDriver.Extras.dll - Sample assembly containing shared handlers,
helpers and forms

Reference Information

For additional information, please visit the EVO Snap* Support site at
http://www.evosnap.com/support/ or contact your EVO Technical Support representative.

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Windows® n

http://www.evosnap.com/support/

