

CommerceDriver™
Quick-Start Guide for Windows®

CommerceDriver™ Quick-Start Guide for Windows®

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Windows® 2

EVO CommerceDriver™.. 3

How It Works ... 3

Version Details .. 3

Compatibility ... 3

Integration .. 4

Authentication... 5

Terminal Service Management (TSM) .. 5

Transaction Processing .. 8

Core Assemblies ... 12

Supplementary Files .. 12

Reference Information ... 12

CommerceDriver™ Quick-Start Guide for Windows®

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Windows® 3

EVO CommerceDriver™
Adding EMV transaction processing to your POS system is easy with the pre-certified EVO

CommerceDriver™ SDK. The pre-certified CommerceDriver™ SDK installs alongside your software

application to add EMV transaction processing to your POS system. CommerceDriver™ facilitates

all transactional communication with the EVO Payments International global processing platforms

and approved hardware devices to isolate payment data and keep it separate from the software

application.

CommerceDriver™ is designed to support multiple terminal manufacturers while retaining a

common API. At startup, CommerceDriver™ detects the supported terminal

manufacturer(s)/models for processing Authorize, Authorize & Capture and Return transactions.

How It Works
1. Create transaction data objects in your POS.

2. Pass the transaction data to CommerceDriver™.

3. CommerceDriver™ initiates terminal commands and gathers tender/EMV data to send to

the EVO Snap* Platform.

4. The EVO Snap* Platform returns a response to CommerceDriver™ with receipt details.

Version Details
 CommerceDriver™ - v2.33.0

 EVOSnap* Web Services - v2.1.33 (Platform calls)

 Supported Terminal – Ingenico ICMP via Serial USB, Ingenico iPP320/iPP350 via Serial USB,

BBPOS Wisepad 2/Wisepad 2+ via Bluetooth

Compatibility
 CommerceDriver™ Framework – Windows® 7+

 Visual Studio 2015+

 .Net 4.6

CommerceDriver™ Quick-Start Guide for Windows®

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Windows® 4

Integration
To get started with CommerceDriver™, select your Platform, Network and Hardware. The setup is

similar to a direct Web Services integration, but CommerceDriver™ must be hosted locally.

For our example, the following setup uses the EVOSnap* assembly for interacting with Ingenico

terminals. The EvoSnap.CommerceDriver.Ingenico.dll assembly must be placed in the same folder

as CommerceDriver™.

1. Download the CommerceDriver™ SDK based on Terminal Manufacturer.

2. Uncompress the archive into a temporary folder.

3. Copy the following files into the folders associated with your solution:

 EvoSnap.CommerceDriver.Common.dll

 EvoSnap.CommerceDriver.Ingenico.dll

 EvoSnap.CommerceDriver.IntegratedTerminals.dll

 Newtonsoft.Json.dll

 RBA_SDK.dll

 RBA_SDK_CS.dll

 EvoSnap.CwsLibrary.dll

4. Add the assembly references to the solution for the following files:

 EvoSnap.CommerceDriver.Common.dll

5. Place the assemblies below into an associated \bin\debug output folder. (The assemblies

above depend on the following assemblies.)

 RBA_SDK.dll

 RBA_SDK_CS.dll

6. Use the (EvoSnap.CommerceDriver.Common.Controllers) CommerceDriverController class to

create an instance and wire up the default event handlers.

// Instantiate the controller and define the logging info
Controller = new CommerceDriverController(sampleSeriveKey, sampleAppProfileId);
Controller.LogInstanceName = "TC001";
Controller.LogInstanceID = 1;
Controller.LogLevel = LogLevel.Trace;

// Wire up general event handlers
Controller.Log += Controller_Log;
Controller.Notification += Controller_Notification;
Controller.GenerateReceipt += Controller_GenerateReceipt;
Controller.ConfirmSignature += Controller_ConfirmSignature;
Controller.ServiceInvoked += Controller_ServiceInvoked;
Controller.Completed += Controller_Completed;
Controller.RetrieveCvv += Controller_RetrieveCvv;

// Create an instance which contains the default password event handlers
Handlers = new DefaultEventHandlers(Controller);

// Wire up the password specific event handlers using the default ones
Controller.IdentityLogin += Handlers.Default_IdentityLogin;
Controller.ChangePassword += Handlers.Default_ChangePassword;

CommerceDriver™ Quick-Start Guide for Windows®

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Windows® 5

Controller.PasswordReset += Handlers.Default_PasswordReset;
Controller.ForgotPassword += Handlers.Default_ForgotPassword;
Controller.AssignQuestions += Handlers.Default_AssignQuestions;

Controller.AccountNotification += Handlers.Default_AccountNotification;

Authentication
Call Login() or LoginAsync() in the CommerceDriverController using a username and password:

GatewaySession session = CommerceDriver.Login(“UserName”, “Password”);

Terminal Service Management (TSM)
Added in version 2.30 of CommerceDriver™, all CommerceDriver™ integrators are required to

support the new TSM features in order to support updates to the Ingenico line of terminals,

including the iCMP, iPP320, and iPP350 terminals.

Terminals will receive updates periodically, and if an update is not applied to a terminal by the

associated deadline date, the terminal will be unable to transact until the update is installed.

Initialize Terminal

The InitializeTerminal method of the Commerce Driver object now provides information if an

update is available for the terminal currently in use. Users must be signed on to their instance of

CommerceDriver™ in order for the initialize terminal process to begin and for the terminal to

begin checking for updates. This sign on procedure can be found for each operating system in

their respective Quick Start Guides. After performing the steps to authenticate and add a terminal,

check the response from the InitializeSelectedTerminal() method to determine if updates are

available.

Code Snippets

To initialize a terminal in C#, call the InitializeSelectedTerminal() method in the

CommerceDriverController. This method runs asynchronously and returns an

InitializeTerminalResult, which contains an instance of TerminalUpdate.

Example code to call and handle the completion of the InitializeSelectedTerminal() method can

be found below:

CommerceDriver™ Quick-Start Guide for Windows®

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Windows® 6

EVOInitializeTerminalResult

 try

 {

 //The InitializeSelectedTerminal() method initializes the SelectedTerminal, and returns

true in the InitializeTerminalResult.IsInitialized if it was successful.

 InitializeTerminalResult result = await Controller.InitializeSelectedTerminal();

 if (result.IsInitialized)

 {

 string message = $"Terminal {Controller.SelectedTerminal.Name} successfully

initialized.";

 //If the InitializeTerminalResult.HasUpdates is true then the user should be

informed that there are updates available for their terminal.

 if (result.TerminalUpdate.HasUpdates && result.TerminalUpdate.UpdateDeadline !=

null)

 {

 message = message + $" Updates are available and must be applied by

{((DateTime)result.TerminalUpdate.UpdateDeadline):dddd, MMMM dd yyyy}";

 }

 MessageBox.Show(message,"Terminal IsInitialized",

MessageBoxButtons.OK,MessageBoxIcon.Information);

 }

 else

 {

 MessageBox.Show("Unable to initialize terminal.", "Terminal Not Initialized",

MessageBoxButtons.OK, MessageBoxIcon.Warning);

 }

 }

 catch (Exception ex)

 {

 MessageBox.Show("Error Initializing Terminal: " + ex.Message, "Initalize Terminal

Error", MessageBoxButtons.OK, MessageBoxIcon.Error);

 }

 public class InitializeTerminalResult
 {
 #region Constructor

 public InitializeTerminalResult()
 {
 IsInitialized = false;
 Error = null;
 TerminalUpdate = new TerminalUpdate();
 }

 #endregion

 #region Properties

 public TerminalUpdate TerminalUpdate { get; internal set; }

 public ErrorInfo Error { get; internal set; }

 public bool IsInitialized { get; internal set; }

 #endregion
 }

CommerceDriver™ Quick-Start Guide for Windows®

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Windows® 7

EVOTerminalUpdate

ErrorInfo

If the HasUpdates property of the TerminalUpdate object is true, call the DownloadAndApplyUpdate

method as described below before the terminal update deadline date.

IMPORTANT! If a terminal has not downloaded the available terminal updates by the associated

deadline date, the terminal will be deactivated, preventing any future transactions.

For more information on downloading and applying terminal updates, or the TSM feature as a

whole, please see the TSM User Guide.

 public class TerminalUpdate
 {
 #region Properties

 public bool HasUpdates { get; }

 public DateTime? UpdateDeadline { get; }

 #endregion

 }

 public class ErrorInfo
 {
 #region Constructors

 public ErrorInfo()
 {
 Code = ErrorCode.UNK;
 Message = string.Empty;
 Exception = null;
 }

 #endregion

 #region Properties

 public ErrorCode Code { get; set; }

 public Exception Exception { get; set; }

 public string Message { get; set; }

 #endregion
 }

https://docs.evosnap.com/wp-content/uploads/2019/08/TSM-User-Guide-for-CD_WIN_External.pdf

CommerceDriver™ Quick-Start Guide for Windows®

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Windows® 8

Transaction Processing
Two transaction sets can be processed using CommerceDriver™.

Terminal Required Transactions

 Authorize

 Authorize and Capture

 Return Unlinked

No Terminal Required Transactions

 Undo

 Capture

 Return by ID

1. Compose a request object to authorize and capture a transaction for $10.00.

AuthorizeCaptureOperationRequest request = new AuthorizeCaptureOperationRequest();

request.Amount = 10.00m;

request.EmployeeId = "1234";

request.LaneId = "1";

request.OrderNumber = "7724";

request.Reference = "98106";

request.TipAmount = 0;

request.CashbackAmount = 0;

request.OverrideApDupe = false;

2. Invoke the Request.

await Controller.ProcessAsync(request);

Note: At first invocation, the user is asked to login via the IdentityLogin event. All dialogs presented

are from DefaultEventHandlers instance.

3. The Completed event contains the processing results. (Requires successful login and

completed transaction processing.)

private void Controller_Completed(object sender, CompletedEventArgs e)

{

 switch (e.OperationResponse.Type)

 {

 case OperationType.AuthorizeCapture:

 AuthorizeCaptureOperationResponse response = e.OperationResponse as

AuthorizeCaptureOperationResponse;

CommerceDriver™ Quick-Start Guide for Windows®

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Windows® 9

 // response.Request -- Contains the original request

 // response.Responses -- All communication with EvoSnap web services

 // response.TransactionResult -- Approved, Declined etc

 // response.TransactionResponse - Transaction response detail

 break;

 }

}

Strong Customer Authentication (SCA) – Contactless PIN

Strong Customer Authentication (SCA) is an overarching mandate that is aimed at increasing and

adding security for potentially suspicious transactions, whether they be Card Present or Card Not

Present transactions. This particular part of the SCA mandate focuses on EMV Contactless PIN,

where additional security will be requested from customers initiating contactless transactions in

the form of asking customers to enter their PIN in order to successfully process certain

transactions. Payment service providers are exempted from the application of SCA, where the

payer initiates a contactless electronic payment transaction, provided that both the following

conditions are met:

 The individual amount of the contactless transaction does not exceed 50 EUR.

 The number of previous contactless transactions initiated since the last application of SCA

does not exceed 150 EUR or 5 consecutive payment transactions.

SCA Contactless PIN workflow is supported for the European market.

Workflow

The following steps outline the process flow for the EMV Contactless PIN flow for SCA.

1. Cardholder taps their card to initiate a contactless transaction.

2. The transaction request is sent to the issuing bank, and they will determine if the

completion of a challenge is needed to complete the transaction, as determined by the

logic set forth under the new SCA mandate.

3. CommerceDriver™ handles the issuing bank’s response by asking the terminal to prompt

for an online PIN, falling back to initiate a contact transaction, or prompting to tap the card

again.

CommerceDriver™ Quick-Start Guide for Windows®

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Windows® 10

4. If a PIN was required, CommerceDriver™ handles a resubmit to the issuing bank with the

extra data needed to approve the contactless transaction (e.g. PIN and KSN).

Verify

Verify is a transaction operation added to the CommerceDriver™ which can be used to validate a

card. The Verify operation will cause the terminal to prompt for a MSR card swipe.

CommerceDriverController Method Call
Task ProcessAsync(VerifyOperationRequest request)

VerifyOperationRequest
public class VerifyOperationRequest: TransactionRequest
 {
 #region Constructors

 public VerifyOperationRequest()

 public VerifyOperationRequest(TransactionRequest request) : base(request)

 #endregion

 #region Properties

 public ProcessOperation Operation { get; }

 #endregion

 #region Methods

 public void AddTransactionRequest(TransactionRequest request)

 public string ToString()

 #endregion
 }

Tokenization

Tokenization is the process of using a token to run what would typically be a card only transaction.

The EVO Snap* platform generates a unique token associated with a customer’s card that can be

used instead of the customer’s actual card to process a transaction.

Note: this process is handled entirely within CommerceDriver™ and, from a merchant

perspective, no extra integration changes are needed. Refer to the Platform Integration Guide

for more information about the specifics included in the Resubmit or Challenge Required

response.

CommerceDriver™ Quick-Start Guide for Windows®

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Windows® 11

How to Run a Tokenized Transaction

In order to run a tokenized transaction, the PaymentAccountDataToken property must be

populated with a valid payment token in the TransactionRequest.CardData field. If the

PaymentAccountDataToken is populated, then CommerceDriver™ will automatically run the

token and no card will be needed to process the transaction.

The transaction types that can use payment tokens are listed below:

 Authorize

 Authorize and Capture

 Return Unlinked

Where to Find the Payment Token

In the response of any transaction that uses a card, there will be a field called

PaymentAccountDataToken. The value in this field is specific to the card that was used in that

transaction and can be used to populate

TransactionRequest.CardData.PaymentAccountData in order to run another transaction for

that card.

Transactions that can return a PaymentAccountDataToken are listed below:

 Authorize

 Authorize and Capture

 Return Unlinked

 Verify

Event Handlers

To simplify the implementation process, event handlers are included in the SDK. EVO Snap*

highly recommends using the default event handlers for the initial connection to the Platform

Services to ensure the password change dialogs are in place. A successful password change is

required for the user account to process requests.

The sample code above utilizes the default event handlers, but custom dialogs can be created.

For additional information, please refer to the CommerceDriver™ Technical Reference Guide for

Windows® or the Sample Application.

CommerceDriver™ Quick-Start Guide for Windows®

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Windows® 12

Core Assemblies
 EvoSnap.CommerceDriver.Common.dll – An assembly containing common code and data

models as well as the main CommerceDriverController class.

 Newtonsoft.Json.dll - An assembly containing code required for serializing/de-serializing

JSON models for REST request and responses.

Supplementary Files
 EvoSnap.CommerceDriver.Extras.dll – Sample assembly containing shared handlers,

helpers and forms

Reference Information
For additional information, please visit the EVO Snap* Support site at

http://www.evosnap.com/support/ or contact your EVO Technical Support representative.

http://www.evosnap.com/support/

