

CommerceDriver™
Quick-Start Guide for iOS®

CommerceDriver™ Quick-Start Guide for iOS®

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for iOS® 2

EVO CommerceDriver™ .. 3

How It Works .. 3

Version Details ... 3

Compatibility .. 3

Integration .. 4

Authentication .. 5

Terminal Setup ... 6

Transaction Processing ... 9

Frameworks .. 13

Reference Information .. 15

CommerceDriver™ Quick-Start Guide for iOS®

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for iOS® 3

EVO CommerceDriver™
Adding EMV transaction processing to your POS system is easy with the pre-certified EVO

CommerceDriver™ SDK. The pre-certified CommerceDriver™ SDK installs alongside your software

application to add EMV transaction processing to your POS system. CommerceDriver™ facilitates

all transactional communication with the EVO Payments International global processing platforms

and approved hardware devices to isolate payment data and keep it separate from the software

application.

CommerceDriver™ is designed to support multiple terminal manufacturers while retaining a

common API. At startup, CommerceDriver™ detects the supported terminal

manufacturer(s)/models for processing Authorize, Authorize & Capture, and Return transactions.

How It Works
1. Create transaction data objects in your POS.

2. Pass the transaction data to CommerceDriver™.

3. CommerceDriver™ initiates terminal commands and gathers tender/EMV data to send to

the EVO Snap* Platform.

4. The EVO Snap* Platform returns a response to CommerceDriver™ with receipt details.

Version Details
 CommerceDriver™ - v2.29.0

 Supports EVO Snap* v2.1.29 Platform calls

 Supported Terminals:

o EVO ITM-100 via Audio Jack

o Ingenico iCMP via Bluetooth

o Ingenico iPP320/350 via Ethernet

o Magtek iDynamo via Lightning Connector

o Magtek uDynamo via Audio Jack

Compatibility
 CommerceDriver™ Framework – iOS 8.0 & Higher using Objective-C

 Sample Code, Projects, & Guides – Created using xCode 10.1 & iOS 9+

CommerceDriver™ Quick-Start Guide for iOS®

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for iOS® 4

Integration
To get started with CommerceDriver™, select your Platform, Network, and Hardware. The setup is

similar to a direct Web Services integration, but CommerceDriver™ must be hosted locally.

1. Drag and drop the framework files provided by your EVO Snap* Support Engineer into the

Embedded Binaries section of your iOS project target.

2. Add the Import statement to the classes using the CommerceDriver™ framework.

3. Initialize the EVOCommerceDriverAPI object with your Service Key and Application Profile ID.

4. Optionally, set the CommerceDriver™ logging level.

#import <EVOCommerceDriver/EVOCommerceDriver.h>

 NSString * sericeKey = @"<YOUR SERVICE KEY>";

 NSString * applicationProfileId = @"<YOUR APPLICATION PROFILE ID>";

 [[EVOCommerceDriverAPI alloc] initWithServiceKey:serviceKey

applicationProfileId:applicationProfileId];

 [commerceDriverAPI setLogLevel:EVOLogLevelDebug];

CommerceDriver™ Quick-Start Guide for iOS®

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for iOS® 5

Authentication
After initializing your instance of EVOCommerceDriverAPI with the EVOPlatformConfiguration settings,

you are required to authenticate to the platform with your Username and Password.

1. Log into the Platform by calling the loginUser:password:completion method

EVOCommerceDriverAPI.

[commerceDriverAPI loginUser:username password:password completion:^(BOOL success,

EVOIdentityLoginState state, NSString *message) {

 //The successful flag can be used to determine if login succeeded.

 if (success) {

 NSLog(@"Logged in successfully with message: %@", message);

 } else {

 ///If login did not succeed, then check the state property to determine the next action.

 switch (state) {

 case EVOIdentityLoginStateSuccessMessage:

 /// Logged in successfully

 /// Continue normally.

 break;

 case EVOIdentityLoginStateInvalidCredentialsMessage:

 ///Login with the supplied credentials failed.

 ///Prompt the user to try again.

 break;

 case EVOIdentityLoginStateRequiredFieldsMessage:

 ///There was a validation error with the data passed to the login call.

 ///Display the error message to the user and let them retry.

 NSLog(@"login message: %@", message);

 break;

 case EVOIdentityLoginStatePasswordChangeRequired:

 ///Indicates that the user must change their password before proceeding.

 break;

 case EVOIdentityLoginStateAccountLocked:

 ///Indicates that the account is locked and the user should be directed to perform

a forgot password to unock.

 break;

 case EVOIdentityLoginStateAccountLockedAdmin:

 //The account has been locked by the EVO Snap service. It can only be unlocked by

contacting support.

 NSLog(@"login message: %@", message);

 break;

 case EVOIdentityLoginStateServiceErrorMessage:

 ///The service returned an error message.

 ///Display the error message to the user.

 NSLog(@"login message: %@", message);

 break;

 default:

 break;

 }

 }

CommerceDriver™ Quick-Start Guide for iOS®

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for iOS® 6

Terminal Setup
CommerceDriver™ supports multiple terminal manufacturer families through individual

frameworks. Choose the terminal(s) your organization would like to support by including the

related framework, create the associated EVOTerminal object and add it to the

EVOCommerceDriverAPI object.

A minimum of one terminal is required to perform the following activities:

 Authorize

 Authorize & Capture

 Return Unlinked

Supported Terminals

CommerceDriver™ for iOS currently supports the following devices.

 EVO ITM-100 – requires the library

 Ingenico iCMP & iPP320/350 – require the EVOIngenicoTerminals.framework library

 Magtek iDynamo/uDynamo – require the EVOMagtekTerminals.framework library.

Terminal Integration

To Setup your device:

1. Drag and drop the EVO CommerceDriver™ framework files provided by EVO Snap* Support

Engineer into the Embedded Binaries section of your iOS project target.

2. For the EVO ITM-100 device, add the following Import statements to the classes using the

EVOIntegratedTerminals.framework.

Note: the ITM100 also requires you grant access to the audio jack in your application. In your Info.plist

file add “Privacy - Microphone Usage Description” key. The string value can be any string, e.g. “ITM100

Access to audio jack”.

#import <EVOCommerceDriver/EVOCommerceDriver.h>

#import <EVOIntegratedTerminals/EVOIntegratedTerminals.h>

CommerceDriver™ Quick-Start Guide for iOS®

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for iOS® 7

3. For the Ingenico library, add the following Import statements to the classes using the

EVOIngenicoTerminals.framework.

Note: when using the ICMP device, the following changes must be made to your XCode project:

 Add the ExternalAccessory.Framework to your project

 To your info.plist, add the “Supported external accessory protocols” array key to your project and

an item to that array with the value “com.ingenico.easypayemv.spm-transaction”

4. For the Magtek library, add the following Import statements to the classes using the

EVOMagtekTerminals.framework.

Note: When using the iDynamo device, the following changes must be made to your XCode project:

 Add the ExternalAccessory.Framework

 In your info.plist add the ‘Supported external accessory protocols’ array key and then add an

item to the array with the value ‘com.ingenico.easypayemv.spm-transaction’

For the uDynamo, grant access to the audio jack in your application and in the info.plist, add the

‘Privacy – Microphone Usage Description’ key with any string value, (e.g.: ‘uDynamo access to audio jack’).

Registering Terminals

To Register your device for support:

1. Create the related terminal object and add the object to the EVOCommerceDriverAPI.

EVO ITM-100

Sample – Create an ITM-100 object using the audio jack interface.

Note: Only one ITM-100 device can be added to the commerceDriverAPI.

#import <EVOCommerceDriver/EVOCommerceDriver.h>

#import <EVOIngenicoTerminals/EVOIngenicoTerminals.h>

 #import <EVOCommerceDriver/EVOCommerceDriver.h>

 #import <EVOMagtekTerminals/EVOMagtekTerminals.h>

//Create an ITM-100 terminal using the audio jack.

 EVOITM100Terminal * itm100 = [EVOITM100Terminal createTerminalWithIdentifier:@"ITM100"];

 //Add that terminal to the CommerceDriver object.

 [commerceDriverAPI addTerminal:itm100];

 //Tell CommerceDriver which device you want to use.

 //Note: When dealing with one terminal, you do not need to make this call as

CommerceDriver will use the device automatically.

 [commerceDriverAPI selectTerminal:itm100];

CommerceDriver™ Quick-Start Guide for iOS®

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for iOS® 8

Ingenico iCMP

Sample – Create an iCMP Terminal w/First Available Paired Device

Sample – Create an iCMP Object Referencing a Specific iCMP Device

Ingenico iPP320/350

Sample – Create an iPP320/350 Object Using an Ethernet Connection

//You first need a reference to your configured EVOCommerceDriverAPI object.

 EVOCommerceDriverAPI *commerceDriverAPI = [self getCommerceDriverObject];

 //Create an Ingenico ICMP terminal using the first available terminal that is paired

with your iOS Device.

 //The Identifier parameter is you own unique identifier for the terminal.

 EVOTerminal * icmp = [EVOIngenicoICMPTerminal createTerminalWithIdentifier:@"Paired-

ICMP"];

 //Add that terminal to the CommerceDriver object.

 [commerceDriverAPI addTerminal:icmp];

 //Tell CommerceDriver which device you want to use.

 //Note: When dealing with one terminal, you do not need to make this call as

CommerceDriver will use the device automatically.

 [commerceDriverAPI selectTerminal:icmp];

 //Get a reference to your configured EVOCommerceDriverAPI object.

 EVOCommerceDriverAPI *commerceDriverAPI = [self getCommerceDriverObject];

 //Create an Ingenico ICMP terminal using the first available terminal that is paired

with your iOS Device.

 //The Identifier parameter is you own unique identifier for the terminal.

 EVOTerminal * icmp = [EVOIngenicoICMPTerminal createTerminalWithAccessoryName:@"ICM122"

serialNumber:@"20552624" identifier:@"20552624"];

 //Add that terminal to the CommerceDriver object.

 [commerceDriverAPI addTerminal:icmp];

 //Tell CommerceDriver which device you want to use.

 //Note: When dealing with one terminal, you do not need to make this call as

CommerceDriver will use the device automatically.

 [commerceDriverAPI selectTerminal:icmp];

//Create an IPP320 or IPP350 device using the ethernet interface.

 //Note: You will need to use the IPAddress and port specific to your IPP3XX device.

 EVOTerminal * ipp3xx = [EVOIngenicoIPP3XXTerminal

createIPP320TerminalWithIPAddress:@"192.168.1.147" port:@"12000" identifier:@"IPP350"];

 //Add that terminal to the CommerceDriver object.

 [commerceDriverAPI addTerminal:ipp3xx];

 //Tell CommerceDriver which device you want to use.

 //Note: When dealing with one terminal, you do not need to make this call as

CommerceDriver will use the device automatically.

 [commerceDriverAPI selectTerminal:ipp3xx];

CommerceDriver™ Quick-Start Guide for iOS®

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for iOS® 9

Magtek iDynamo

Sample – Create an iDynamo Object Using a Lightning Connection

Magtek uDynamo

Sample – Create a uDynamo Object Using the Audio Jack

Transaction Processing
Two transaction sets can be processed using CommerceDriver™:

1. Terminal Required Transactions

 Authorize

 Authorize and Capture

 Return Unlinked

 Verify

2. No Terminal Required Transactions

 Undo

 Capture

 Return by ID

//Create an Magtek iDynamo terminal using the lightning bolt port.

EVOTerminal * iDynamo = [EVOIDynamoTerminal createTerminalWithIdentifier:@"iDynamo"];

//Add that terminal to the CommerceDriver object.

[commerceDriverAPI addTerminal:iDynamo];

//Tell CommerceDriver which device you want to use.

//Note: When dealing with one terminal, you do not need to make this call as CommerceDriver

will use the device automatically.

[commerceDriverAPI selectTerminal:iDynamo];

//Create an Magtek uDynamo terminal using the audio jack.

 EVOTerminal * uDynamo = [EVOUDynamoTerminal createTerminalWithIdentifier:@"uDynamo"];

 //Add that terminal to the CommerceDriver object.

 [commerceDriverAPI addTerminal:uDynamo];

 //Tell CommerceDriver which device you want to use.

 //Note: When dealing with one terminal, you do not need to make this call as

CommerceDriver will use the device automatically.

 [commerceDriverAPI selectTerminal:uDynamo];

CommerceDriver™ Quick-Start Guide for iOS®

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for iOS® 10

Creating a POS Transaction Request

To Start a transaction:

1. Create an EVOPOSTTransactionRequest:

Note: Use the ‘create’ factory methods to create various transaction request types.

2. Once the POS Request object is created, call the processTransactionRequest: method from

the EVOCommerceDriverAPI object:

 /** Use this factory method to create an EVOPOSOperationAuthorizeAndCapture with a

tenderType of EVOPOSTenderTypeCredit.*/

 + (instancetype)createAuthorizeAndCaptureRequestAmount:(NSDecimalNumber *)amount

employeeId:(NSString *)employeeId laneId:(NSString *)laneId orderNumber:(NSString

*)orderNumber reference:(NSString *)reference tipAmount:(NSDecimalNumber *)tipAmount

cashbackAmount:(NSDecimalNumber *)cashbackAmount overrideApDupe:(BOOL)overrideApDupe;

 /** Use this factory method to create an EVOPOSOperationAuthorizeAndCapture with a

specified tenderType.*/

 + (instancetype)createAuthorizeAndCaptureRequestAmount:(NSDecimalNumber *)amount

employeeId:(NSString *)employeeId laneId:(NSString *)laneId orderNumber:(NSString

*)orderNumber reference:(NSString *)reference tipAmount:(NSDecimalNumber *)tipAmount

cashbackAmount:(NSDecimalNumber *)cashbackAmount overrideApDupe:(BOOL)overrideApDupe

tenderType:(EVOPOSTenderType)tenderType;

 /** Use this factory method to create an EVOPOSOperationAuthorize.*/

 + (instancetype)createAuthorizeRequestAmount:(NSDecimalNumber *)amount

employeeId:(NSString *)employeeId laneId:(NSString *)laneId orderNumber:(NSString

*)orderNumber reference:(NSString *)reference tipAmount:(NSDecimalNumber *)tipAmount

cashbackAmount:(NSDecimalNumber *)cashbackAmount overrideApDupe:(BOOL)overrideApDupe;

 /** Use this factory method to create an EVOPOSOperationReturnUnlinked.*/

 + (instancetype)createReturnUnlinkedRequestAmount:(NSDecimalNumber *)amount

employeeId:(NSString *)employeeId laneId:(NSString *)laneId orderNumber:(NSString

*)orderNumber reference:(NSString *)reference tipAmount:(NSDecimalNumber *)tipAmount

cashbackAmount:(NSDecimalNumber *)cashbackAmount overrideApDupe:(BOOL)overrideApDupe;

 /* Use this factory method to create an Undo Request */

 + (instancetype) createUndoRequestTransactionID:(NSString *)transactionID;

 /* Use this factory method to create a Capture Request without a tip.*/

 + (instancetype) createCaptureRequestTransactionID:(NSString *)transactionID

amount:(NSDecimalNumber *)amount;

 /* Use this factory method to create a Capture request with a tip. */

 + (instancetype) createCaptureRequestTransactionID:(NSString *)transactionID

amount:(NSDecimalNumber *)amount tipAmount:(NSDecimalNumber *)tipAmount;

 /* Use this factory method to create a Return with a TransactionID */

 + (instancetype) createReturnRequestTransactionID:(NSString *)transactionID

amount:(NSDecimalNumber *)amount;

 /** Use this factory method to create a resubmit request.*/

 + (instancetype) createResubmitRequestTransactionId:(NSString *)transactionID

amount:(NSDecimalNumber *)amount tipAmount:(NSDecimalNumber *)tipAmount;

 /**Use this factory method to create an EVOPOSOperationVerify request.*/

 + (instancetype)createVerifyRequestEmployeeId:(NSString *)employeeId laneId:(NSString

*)laneId orderNumber:(NSString *)orderNumber reference:(NSString *)reference;

CommerceDriver™ Quick-Start Guide for iOS®

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for iOS® 11

 [commerceDriverAPI processTransactionRequest:authAndCaptureRequest];

To Cancel a Request:

1. Call cancelAsyncProcess:

 [commerceDriverAPI cancelAsyncProcess:authAndCaptureRequest];

POS Transaction Request Delegate

The delegate of the EVOPOSTransactionRequest must adopt the EVOPOSTransactionRequestDelegate

protocol. The delegate is used to communicate transaction and terminal statuses. It also uses this

delegate to request data that is needed from the POS operator or the customer during a

transaction.

After creating an EVOPOSTransactionRequest, set the delegate property to a class that implements

the EVOPOSTransactionRequestDelegate protocol.

The protocols require implementation of the following methods:

1. -(void)request:(EVOPOSTransactionRequest *)request failedToStartWithErrors:(NSDictionary *)errors ;

Called when a transaction can not be started. This method is called when there are

problems connecting to the terminal or the transaction data passed do not meet basic

validation tests. Check the errors dictionary for the specific reason for the failure.

2. -(void)request:(EVOPOSTransactionRequest *)request cardReaderStatusUpdate:

(EVOCardReaderState)status;

Notifies the delegate of the the current type of card read that is in progress. This

method is only called for terminals without a display. Upon receiving this method call,

the POS must display the proper instructions to the customer to present their card.

3. -(void)request:(EVOPOSTransactionRequest *)request selectApplication:(NSArray *)applicationList

completion:(void(^)(int arrayIndex))completion;

The delegate will receive this method call under two conditions:

 The terminal does not have a display.

 The card used has multiple payment applications.

CommerceDriver™ Quick-Start Guide for iOS®

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for iOS® 12

Upon receiving this method call, a interface must be shown that displays each item in

the applicationList and provides the customer with the ability to select one of the

applications to use for payment. After the user makes a seleaction, call the completion

block passing the array index of the selected application.

4. -(void)request:(EVOPOSTransactionRequest *)request confirmCardRemoved:(void(^)())completion;

On terminals without a display, this delegate method is called when there is a problem

reading an EMV card and the card reader needs to restart. After receiving this method

call, the POS operator should be prompted to confirm that the card has been removed.

Once that card is removed, call the completion block and transaction processing will

continue.

5. -(void)request:(EVOPOSTransactionRequest *)request confirmTransactionAmount:(NSDecimalNumber

*)amount completion:(void(^)(BOOL amountConfirmed))completion;

On terminals without a display, the amount confirmation must happen on the POS.

Upon receiving this delegate method, display a UI showing the amount and two options

to either accpet or reject the amount. If the amount is accepted, call the completion

block with amountConfirmed = YES. If the amount is rejected, call the completion block

with amountConfirmed = NO.

6. -(void)getSignatureForRequest:(EVOPOSTransactionRequest *)request

withResponse:(EVOTransactionResponse *)response completion:(void(^)(BOOL

signatureAccepted))completion;

Called when validation of a signature is needed.

7. -(void)request:(EVOPOSTransactionRequest *)request completedWithResponse:(EVOTransactionResponse

*)response;

Called upon completion of a transaction.

8. -(void)request:(EVOPOSTransactionRequest *)request getCVV:(void (^)(NSString *cvvCode))completion;

Called when running an Amex MSR transaction which requires the CVV code from the

back of the card.

CommerceDriver™ Quick-Start Guide for iOS®

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for iOS® 13

Tokenized Transactions

Verification

A Verify transaction requesat can be used to create a token for use in future transactions. The

process for running a Verify transaction request is the same process outlined in the Transaction

Processing section. Please refer to that section for more details.

1. Use the

createVerifyRequestEmployeeId:laneId:orderNumber:reference: method

of EVOPOSTransactionRequest to create a transaction request.

2. Then pass the transaction request to the

processTransactionRequest: of the EVOCommerceDriverAPI. The

terminal will start a swipe only authorization for $0.00.

Example

NSDecimalNumber * amount = [NSDecimalNumber decimalNumberWithString:@"10.00"];
 NSDecimalNumber * tipAmount = [NSDecimalNumber decimalNumberWithString:@"0.00"];
 NSDecimalNumber * cashbackAmount = [NSDecimalNumber decimalNumberWithString:@"0.00"];
 NSString * employeeId = @"Clerk-01";
 NSString * reference = @"Example payment";
 NSString * laneId = @"01";
 NSString * orderNumber = @"Example-1234";

 EVOPOSTransactionRequest * request = [EVOPOSTransactionRequest createVerifyRequestEmployeeId:employeeId

laneId:laneId orderNumber:orderNumber reference:reference];

 request.delegate = self;

 [commerceDriverAPI processTransactionRequest:request];

Upon successful completion of the platform request, you will receive an EVOTransanctionResponse

continaing the paymentAccountDataToken field. The paymentAccountDataToken is a secure, tokenized

representation of the card used for the transaction. This token can be saved for later use in

subsequent transaction requests.

Processing Transactions with a Token

Once you have a paymentAccountDataToken, you can process transactions without the need for a

credit card payment terminal.

CommerceDriver™ Quick-Start Guide for iOS®

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for iOS® 14

The steps for processing a payment are similar to the step outlined in the Transaction Processing

section, but instead of using the processTransactionRequest: method, the

processTransactionRequest: paymentAccountDataToken: method is used. This method will start a

transacyion and go straight to online authorization.

Example
EVOCommerceDriverAPI * commerceDriverAPI = ...;

 NSString *accountDataToken = @"49947f6b-6fb4-4c7c-78a3-810de5c6a1f9127986b7-4b5e-47b1-6f88-d15c34712c0d";

 NSDecimalNumber * amount = [NSDecimalNumber decimalNumberWithString:@"10.00"];
 NSDecimalNumber * tipAmount = [NSDecimalNumber decimalNumberWithString:@"0.00"];
 NSDecimalNumber * cashbackAmount = [NSDecimalNumber decimalNumberWithString:@"0.00"];
 NSString * employeeId = @"Clerk-01";
 NSString * reference = @"Example payment";
 NSString * laneId = @"01";
 NSString * orderNumber = @"Example-1234";

 EVOPOSTransactionRequest * request = [EVOPOSTransactionRequest createAuthorizeRequestAmount:amount

employeeId:employeeId laneId:laneId orderNumber:orderNumber reference:reference tipAmount:tipAmount

cashbackAmount:cashbackAmount overrideApDupe:YES];

 request.delegate = self;

 [commerceDriverAPI processTransactionRequest:request paymentAccountDataToken:accountDataToken];

Frameworks
CommerceDriver™ for iOS consists of the following frameworks:

 EVOCommerceDriver.framework - The core framework providing all CommerceDriver™

functionality. This framework is required.

 EVOIntegratedTerminals.framework - This framework provides the terminal implementation

for all EVO payment terminals supported by CommerceDriver™.

 EVOIngenicoTerminals.framework - This framework provides the terminal implementation for

all Ingenico payment terminals supported by CommerceDriver™.

 EVOMagtekTerminals.framework - This framework provides the terminal implementation for

all Magtek payment terminals supported by CommerceDriver™.

CommerceDriver™ Quick-Start Guide for iOS®

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for iOS® 15

Reference Information
For additional information, please visit the EVO Snap* Support site at

http://www.evosnap.com/support/ or contact your EVO Technical Support representative.

http://www.evosnap.com/support/

