

User Guide
Terminal Service Management (TSM) for Android™

Making Payments a Snap* for Developers | TSM User Guide 1

Overview
The purpose of this document is to outline the new Terminal Service Management (TSM) features

for CommerceDriver™ for the Android operating system. All CommerceDriver™ integrators are

required to support the new TSM features in order to support updates to the Ingenico line of

terminals, including the iCMP, iPP320, and iPP350 terminals.

Terminals will receive updates periodically, and if an update is not applied to a terminal by the

associated deadline date, the terminal will be unable to transact until the update is installed.

Initialize Terminal
The InitializeTerminal method of the CommerceDriver™ object now provides information if an

update is available for the terminal currently in use. Users must be signed on to their instance of

CommerceDriver™ in order for the initialize terminal process to begin and for the terminal to

begin checking for updates. This sign on procedure can be found for each operating system in

their respective Quick Start Guides. After performing the steps to authenticate and add a terminal,

check the response from the initializeTerminal() method to determine if updates are available.

Code Snippets

To initialize a terminal in C#, call the initializeTerminal() method in CommerceDriver™. This

method runs asynchronously and returns an ConnectionResult, which contains a Boolean

isUpdateAvailable() as well as a list of available updates via getUpdates().

Example code to call and handle the completion of the initializeTerminal() method can be found

below:

Making Payments a Snap* for Developers | TSM User Guide 2

InitializeTerminalResult

class TerminalConnectCallable implements Callable<ConnectResponse> {

 private final CommerceDriver commerceDriver;

 public TerminalConnectCallable(CommerceDriver commerceDriver) {
 this.commerceDriver = commerceDriver;
 }

 @Override
 public ConnectResponse call() throws Exception {
 return commerceDriver.connectTerminal();
 }
}

// MainActivity
 @Override
 public void connectSelectedTerminal() {
 TerminalConnectCallable callable = new TerminalConnectCallable(commerceDriver);
 CallableTask<ConnectResponse> task = new CallableTask<ConnectResponse>(callable);
 task.setUiCallback(this);
 task.setResultCallback(new CallableTaskResultCallback<ConnectResponse>() {
 @Override
 public void onReturnException(Exception exception) {
 // Exception handling here
 }

 @Override
 public void onReturnResult(ConnectResponse response) {
 if (response.isUpdateAvailable()) {
 // Terminal has an update. Can prompt dialog here and move on, or start update flow.
 }
 // Connected with no updates available.
 }
 });
 task.execute();
}

package com.evosnap.commercedriver.terminal;

import com.evosnap.commercedriver.cws.terminal.AvailableUpdateInfo;

import java.util.List;

public interface ConnectResponse {

 Result getResult();

 String getErrorMessage();

 List<AvailableUpdateInfo> getUpdates();

 boolean isUpdateAvailable();

 enum Result {
 CONNECTED,
 INVALID_TERMINAL_ID,
 SESSION_REQUIRED,
 TERMINAL_ERROR,
 }
}

Making Payments a Snap* for Developers | TSM User Guide 3

If the isUpdateAvailable property of the TerminalUpdate object is true, call the DownloadAndApplyUpdate

method as described below before the terminal update deadline date.

IMPORTANT! If a terminal has not downloaded the available terminal updates by the associated

deadline date, the terminal will be deactivated, preventing any future transactions. Notification of

this should be given to the merchant in the form of a “pop-up” message on the terminal. The

suggested message can be found below:

 “Terminal updates not installed by their deadline will result in a deactivation of your terminal.

Would you like to begin the updates?”

Suggested action buttons and their suggested corresponding actions can be found below:

Action Button Message Suggested Resulting Action

“Begin updates now”

Begins updates immediately after selecting the button. Note that this

process can take up to 30 minutes, so this action should only be

selected when the terminal can be inactive for approximately half an

hour.

Remind merchants that they cannot disrupt the terminal while it

is in the process of applying the update; this could break the

terminal completely and requires a new terminal to be sent to the

merchant.

“Remind me later”

The pop-up is shown every time the terminal initializes; it is

recommended that ISVs give merchants the option to start updates at

any time, such as in a dropdown menu.

Downloading and Applying a Terminal Update
This section outlines the steps for using the downloadAndApplyUpdate call. This call can be made at

any time, meaning merchants do not need to wait for an update to be available in order to make

this call.

Note that, normally, there will only be one terminal update to be applied at any given time, but it is

possible for multiple updates to need to be applied at a time.

The process of downloading and applying a terminal update can take up to 30 minutes, so it is

recommended that these updates be started with ample time to complete. Do not disrupt the

Making Payments a Snap* for Developers | TSM User Guide 4

terminal while it is in the process of applying the update, otherwise you risk breaking the

terminal completely. This will require a new terminal to be sent to the merchant applying

the update.

See the table below for an outline of the steps that occur during this process and how long they

could possibly take:

Enum Name Description Step Speed

Validation
This step validates that the terminal can and

is ready to be updated.
Very fast

CheckForUpdates
This step checks for any available updates for

the terminal.
Fast

DownloadFile This step downloads the update file.

Speed depends on file size and

internet speed of the

downloader.

WriteFileToTerminal

This step takes the update and breaks it down

into smaller chunks so that the file can be

written to the terminal. Then, it writes the

broken up file pieces to the terminal.

Speed depends on the file size.

TerminalReboot
This step reboots the terminal after the

update has been applied.

Slow – this is the longest step

in the terminal update

process.

ConfirmUpdate
This step reports that the terminal has been

successfully updated to the Snap* platform.
Fast

Updates are installed one at a time and the terminal is restarted at the end of each update. After

a terminal restart, the InitializeTerminal method must be called again. It is possible for multiple

updates to be available for the terminal at the same time, but they are installed one at a time. For

this reason, when calling InitializeTerminal after restart, check the property isUpdateAvailable

again. If it is true, call the DownloadAndApplyUpdate() method again.

When using a terminal which connects via Bluetooth, it may be necessary to go through the

Bluetooth pairing process after an update. This only happens when the firmware of the device is

updated. This process needs to be performed before you can reconnect to the device.

Making Payments a Snap* for Developers | TSM User Guide 5

Code Snippets

If InitializeTerminal() returns updates as outlined above, call the DownloadAndApplyUpdate()

method in CommerceDriver™ before the specified deadline date. This method runs

asynchronously and will return an ApplyUpdateContext object when finished.

DownloadAndApplyUpdate

DownloadAndApplyUpdate will return an ApplyUpdateContext. This context can then be used to set

update callback, file accessor, and executing the update as shown in the example below. When

finished, downloadAndApplyResultType enum can be used for seeing the status of the invoked

update.

ApplyUpdateContext

package com.evosnap.commercedriver.terminal.update;

public interface ApplyUpdateContext {

 String TAG = "ApplyUpdateContext";

 DownloadAndApplyResultType beginUpdate();

 void setUpdateCallback(TerminalUpdateCallback callback);

 void setFileAccessor(FileAccessor fileAccessor);

 DownloadAndApplyResultType getDownloadAndApplyResultType();

 String getErrorMessage();
}

// In MainActivity (or fragment)

public void applyUpdate(ApplyUpdateContext context) {

 Timber.tag(BuildConfig.TAG).d("[%s] applyUpdate()", TAG);

 FileAccessor fileAccessor = new ContextFileAccessor(getContext());

 context.setFileAccessor(fileAccessor);

 TerminalUpdateCallback updateCallback = new RecyclerUpdateCallback(recyclerViewAdapter);

 context.setUpdateCallback(updateCallback);

class ApplyUpdateCallable implements Callable<DownloadAndApplyResultType> {
 private final ApplyUpdateContext context;

 public ApplyUpdateCallable(ApplyUpdateContext context) {
 this.context = context;
 }

 @Override
 public DownloadAndApplyResultType call() throws Exception {
 return context.beginUpdate();
 }
}

Making Payments a Snap* for Developers | TSM User Guide 6

ApplyUpdateContext (cont.)

DownloadAndApplyResultType

 Callable<DownloadAndApplyResultType> callable = new ApplyUpdateCallable(context);

 CallableTask<DownloadAndApplyResultType> task = new CallableTask<>(callable);

 task.setResultCallback(new CallableTaskResultCallback<DownloadAndApplyResultType>() {

 @Override

 public void onReturnException(Exception exception) {

 Timber.tag(BuildConfig.TAG).w("[%s] Exception Thrown : %s", TAG, exception);

 recyclerViewAdapter.addMessage("Exception...");

 recyclerViewAdapter.addMessage(exception.getMessage());

 }

 @Override

 public void onReturnResult(DownloadAndApplyResultType downloadAndApplyResultType) {

 Timber.tag(BuildConfig.TAG).w("[%s] ApplyUpdate Chain Completed : %s", TAG,

downloadAndApplyResultType);

 recyclerViewAdapter.addMessage(String.format("Completed - %s", downloadAndApplyResultType));

 }

 });

 task.execute();

 }

public enum DownloadAndApplyResultType {

 CANCELLED,

 TERMINAL_UP_TO_DATE,

 VALIDATION_ERROR_NOT_LOGGED_IN,

 VALIDATION_ERROR_TERMINAL_NOT_SELECTED,

 VALIDATION_ERROR_NOT_INITIALIZED,

 VALIDATION_ERROR_NOT_ENOUGH_SPACE,

 DOWNLOAD_FAILED,

 HASH_CHECK_FAILED,

 TERMINAL_WRITE_FAILED,

 CONFIRM_UPDATE_FAILED,

 SUCCESS,

}

Making Payments a Snap* for Developers | TSM User Guide 7

ProgressMessage

A progressMessage enum is also set throughout the update chain, which can be checked

throughout the update for additional update context.

New Merchants
New merchants have a slightly different workflow when getting started with TSM. New terminals

become auto-registered when used to take their first transaction, after which merchants have

three days to apply the expired available updates, no matter how long after the update expiration

date, to their terminals in order to remain compliant. Multiple updates will most likely be needed.

Testing and Certification
To begin testing and certification of TSM, please contact EVO Snap*, and we will begin putting

together sample files and an environment for you to test in. To properly set up these files, we will

need the merchant ID to test with, the current RBA version of the terminal, the terminal serial

number, and terminal type being used to test.

Troubleshooting Common Errors

The following list details common problems encountered while using TSM. If a merchant

encounters one of these errors, direct them to contact your technical support, who should then

contact EVO Snap* support for further assistance if needed.

 The terminal keeps rebooting.

 The terminal loads in LLT mode.

 Terminal loads but all text is distorted, or the all the text is absent.

 Terminal loads with a blank default screen.

 Terminal loads and shows ‘Waiting for download…’ message, along with file names and

versions.

public enum ProgressMessage {

 Validation,

 CheckForUpdates,

 DownloadFile,

 WriteFileToTerminal,

 TerminalReboot,

 ConfirmUpdate,

}

Making Payments a Snap* for Developers | TSM User Guide 8

 Terminal loads correctly, but all transactions are declining before prompting for a card.

Final Steps and Best Practices
Eventually, there will be no more terminal updates available for download and application. After

all the terminal updates have been applied to the terminal, the terminal will disconnect and the

InitializeTerminal call will need to be run again. Check the response from the InitializeTerminal

call to ensure no other updates are needed; optionally, run the DownloadAndApplyUpdate() method.

IMPORTANT! The information contained in this document outlines the best practices for

handling the implementation of TSM, as determined by EVO Snap*. Though users are able to

implement TSM in whatever manner they choose, it is strongly encouraged that ISVs follow

the directions in this document to ensure ease of use and quality of service for merchants.

