
 evopayments.com

©2018 EVO Payments, Inc.

3-D Secure 2.0
3-D Secure as a Service Integration Guide

 Proprietary & Confidential 1

Table of Contents

VERSION HISTORY .. 2

OVERVIEW ... 4

3-D SECURE AS A VALUE ADDED SERVICE... 4

WORKFLOW .. 4

AUTHENTICATION ... 5

Sign on With Token ... 5

CHECK FOR 3-D SECURE 2.0 SUPPORT .. 5

QueryCardRanges without Serial Number ... 6

QueryCardRanges with Serial Number ... 7

QuerySingleCard ... 8

CHECKING IF METHOD DATA IS REQUIRED (METHODCOMPLETIONINDICATOR) ... 9

When MethodCompletionIndicator = ‘Completed’ .. 9

When MethodCompletionIndicator = ‘NotCompleted’.. 9

When MethodCompletionIndicator = ‘Unavailable’ ... 9

When MethodCompletionIndicator = ‘NotSet’ ... 9

PROTOCOL SUPPORT .. 10

INITIAL AUTHENTICATION REQUEST ... 11

Browser-Based Frictionless Authentication .. 11

Application-Based Frictionless Authentication ... 16

Challenge Authentication Response .. 20

QUERYAUTHENTICATIONRESULTS WITH CHALLENGE RESPONSE .. 21

AUTHORIZATION .. 25

CARD ON FILE FOR NON-PAYMENT TRANSACTIONS .. 25

Adding Card on File without Processing Payment ... 25

Updating Existing Card on File without Processing Payment .. 26

 Proprietary & Confidential 2

Version History
Version Date Description of Changes

V1 11 May 2020 Initial version

V2 27 May 2020

> Removed PaymentAuthorizationResponse from

required fields on QueryAuthenticationResponse

> Updated Requests to include only Required fields

> Added TransactionStatus to

BankcardTransctionResponse

> Changed ChallengeCancellationIndicator to a

String

> Added clarification on

MethodCompletionIndicator

> Updated Challenge Required by triggering off of

TransactionStatus = “Challenge Required”

> Removed inaccurate references to Authorize and

AuthorizeAndCapture in the Method Data section

> Removed Fallback functionality that will be added

in a later release.

> Added workflow diagram

V3 16 June 2020

> Added clarification on Frictionless Flow

> Updated diagram for 3DSaaS Flow

> Updated QueryAuthenticationResponse to

QueryAuthenticationResults as it was

implemented

> Updated Request URIs

> Updated Authenticate to include

ThreeDSMerchantData

> .35R2 Updates for Protocol Support and

Exemptions

> Updated ProtocolVersion Format

V4 17 June 2020

> Updated SIS URIs and ProtocolVersion

> Updated request body for Card Range calls

> Updated Failed Exemption workflow

V5 01 July 2020
> Added clarification on submitting an Exempted

Transaction Request

V6 13 July 2020
> Updated RangeAction options for

QueryCardRanges with Serial Number

V7 16 July 2020

> Application-Based Frictionless Authentication

section added

> Card on File for Non-Payment Transactions

 Proprietary & Confidential 3

section added

> Changed MerchantName field to RequestorName

 Proprietary & Confidential 4

Overview
3-D Secure is a protocol developed to make online payments more secure through password authentication

and cardholder verification. The new Card Scheme mandates are the next wave of 3-D Secure that will bring

additional eCommerce security to EMV. These updates will be supported for the eService and TRON front-

ends.

3-D Secure as a Value Added Service
For non-transacting Merchants, 3-D Secure is offered as a standalone value-added service. Merchant

Applications will be able to submit 3-D Secure transactions solely for 3-D Secure Authentication purposes, in

which the transaction will eventually be processed outside of the Snap* Platform. API calls have been added

to the Snap* API. The Authentication request and the QueryAuthenticationResults request will only be used

in the event that a Challenge is required.

Workflow
This workflow outlines the process for an integrator that is utilizing 3-D Secure as a standalone value-added

service, in which the transaction will eventually be processed outside of the Snap* Platform. The workflow is

broken out into two distinct parts: Authentication, which is done through Snap*, and Authorization, which is

done elsewhere.

1. An initial Sign On call is made to receive credentials to process

2. The Merchant App will identify if Method Data is required (options are detailed below)

3. Authenticate is called to start Authentication process

4. If Challenge is required, Merchant App and Access Control Server complete a challenge

5. Snap* sends Authentication results to Merchant App

 Proprietary & Confidential 5

Authentication
For Authentication, the Merchant Application follows a similar workflow as if the payment were going to be

processed through the Snap* Platform, beginning with a Sign On.

Sign on With Token
Merchants will need to implement the SignOnWithToken API request to get a SessionToken for the Snap*

platform. See the example requests and responsesbelow:

SOAP SignOnWithToken Request

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<SOAP-ENV:Body>

<SignOnWithToken xmlns="http://schemas.evosnap.com/CWS/v2.0/ServiceInformation">

<identityToken>PHNhbWw6QXNzZXJ0aW9uIE1ham9yVmVyc2lvbj0…</identityToken>

</SignOnWithToken>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP SignOnWithToken Response

<s:Envelope

xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"><s:Body><SignOnWithTokenResponse

xmlns="http://schemas.evosnap.com/CWS/v2.0/ServiceInformation"><SignOnWithTokenResult>PHNhbW

w6QXNz…<

/SignOnWithTokenResult>

</SignOnWithTokenResponse>

</s:Body>

</s:Envelope>

REST SignOnWithToken Request

RequestUri https://api.cipcert.goevo.com/2.1.35/REST/SIS.svc/token

Method GET

Set Username as the Identity Token on the HTTP Authentication header. The Request body is empty.

REST SignOnWithToken Response

A long SessionToken is returned on the response. This will be required on subsequent calls.

Check for 3-D Secure 2.0 Support
The 3-D Secure protocol requires the Card Range of a transaction be checked for 3-DS 2.0 support prior to

Authentication. Card Range Data contains which versions of 3-D Secure the card(s) support, as well as

 Proprietary & Confidential 6

indicates if Method Data is required for the transaction. Method Data is additional information about a

Cardholder’s environment that is obtained by the Access Control Server via the Merchant Application. Snap*

offers two options to have the Card Range Data results returned to the Merchant.

First, Merchants can manage their own cache of Card Range Data and receive all the updates since the last

query using the QueryCardRanges operation. If the Merchant is using their own cache, they must query

their own cache for 3-DS support before sending the initial Authentication request. This approach is optimal

as it reduces the individual transaction time due to not having to query Snap* for this information on each

transaction.

To initiate a Merchant cache, Merchants should query without a unique serial number. This will return all

known Card Ranges as well as a unique serial number. Future queries should use the previously returned

serial number to receive only Card Range updates since the last query.

QueryCardRanges without Serial Number

RequestUri
https://api.cipcert.goevo.com/2.1.35/REST/

ThreeDSecure.svc/3ds/querycard/ranges/{CardBrand}

Method POST

Authentication Session token set as Username on Authentication header

Request

{

 "AcquirerBIN": "654321",

 "MerchantCategoryCode": "1234",

 "Country": "USA", "MerchantBankId": "bank id",

 "MerchantId": "888888",

 "RequestorName": "MerchantName",

 "MerchantNumber": "TEST_NUMBER",

 "MerchantUrl": "http://www.evosnap.com",

 "MethodNotificationUrl": "http://methodnotification.url",

 "Name": "who are you",

 "NotificationUrl": "http://somenotification.url",

 "DeviceChannel": 2

}

Response

{ "CardRanges":[{

 "RangeAction": "A",

 "RangeStart": "4000000000000000",

 "RangeEnd": "4100000000000000",

 "AcsStartProtocolVersion": "2.1.0",

 "AcsEndProtocolVersion": "2.2.0",

 "ThreeDsMethodUrl": "https://some.ds.url/" }],

 "SerialNumber": "1"

}

 Proprietary & Confidential 7

QueryCardRanges with Serial Number

RequestUri
https://api.cipcert.goevo.com/2.1.35/REST/

ThreeDSecure.svc/3ds/querycard/ranges/{CardBrand}?serialNumber={serialNumber}

Method POST

Authentication Session token set as Username on Authentication header

Request

{

 "AcquirerBIN": "654321",

 "MerchantCategoryCode": "1234",

 "Country": "USA",

 "MerchantBankId": "bank id",

 "MerchantId": "888888",

 "RequestorName": "MerchantName",

 "MerchantNumber": "TEST_NUMBER",

 "MerchantUrl": "http://www.evosnap.com",

 "MethodNotificationUrl": "http://methodnotification.url",

 "Name": "who are you",

 "NotificationUrl": "http://somenotification.url",

 "DeviceChannel": 2

}

Response

{ "CardRanges":[{

 "RangeAction": "A",

 "RangeStart": "4000000000000000",

 "RangeEnd": "4100000000000000",

 "AcsStartProtocolVersion": "2.0",

 "AcsEndProtocolVersion": "2.1",

 "ThreeDsMethodUrl": "https://some.ds.url/" }],

 "SerialNumber": "2"

}

The response will contain the RangeAction for the associated Card Range. RangeAction has three options: A

“Add”, D “Delete”, or M “Modify”. “Modify” excludes any modification of the RangeStart or RangeEnd.

On initial release, the CardType values supported will be ‘MasterCard’ and ‘Visa’. It is recommended to call

QueryCardRanges daily for the most up to date Card Range Data.

If ThreeDsMethodUrl is populated in the response, Method Data is required. For more information on

retrieving Method Data, please refer to card brand documents on ACS functionality.

Optionally, Merchants can query the Snap* Card Range Cache for the specific card being used in an

individual transaction by the card number using the QuerySingleCard operation. The response will contain

which versions of 3-D Secure the card supports, as well as if Method Data is required for the transaction.

This call will need to be made before any 3-D Secure attempt with an Authenticate transaction and will

increase overall transaction time.

 Proprietary & Confidential 8

QuerySingleCard

RequestUri
https://api.cipcert.goevo.com/2.1.35/REST/ThreeDSecure.svc/3ds/querycard/single/{ca

rdType}/{cardNumber}

Method POST

Authentication Session token set as Username on Authentication header

Request

{

 "AcquirerBIN": "654321",

 "MerchantCategoryCode": "1234",

 "Country": "USA",

 "MerchantBankId": "bank id",

 "MerchantId": "888888",

 "RequestorName": "MerchantName",

 "MerchantNumber": "TEST_NUMBER",

 "MerchantUrl": "http://www.evosnap.com",

 "MethodNotificationUrl": "http://methodnotification.url",

 "Name": "who are you",

 "NotificationUrl": "http://somenotification.url",

 "DeviceChannel": 2

}

Response with ThreeDsMethodUrl

{

 "CardRange": {

 "AcsStartProtocolVersion": "2.0",

 "AcsEndProtocolVersion": "2.1",

 "ThreeDsMethodUrl": "https://some.ds.url/"

 },

 "MethodData": {

 "ThreeDsMethodData": "somestring",

 "AcsUrl": "https://some.acs.url/",

 "ServerTransactionId": "00000000-0000-0000-0000-000000000000"

 }

}

Response without ThreeDsMethodUrl

{

 "CardRange": {

 "AcsStartProtocolVersion": "1.0",

 "AcsEndProtocolVersion": "1.3",

 "ThreeDsMethodUrl": ""

 },

 "MethodData": {

 "ThreeDsMethodData": "",

 "AcsUrl": "https://some.acs.url/",

 "ServerTransactionId": "00000000-0000-0000-0000-000000000000"

 }

}

 Proprietary & Confidential 9

At the time of a purchase, Snap* checks whether the card is supported for 3-D Secure 2.0 and if Method

Data is required for the transaction. Merchants may query for Card Range Data outside of normal

transaction processing to keep their Card Range Cache up to date or they may query Snap* on each

transaction to check for 3-D Secure 2.0 support.

Checking if Method Data is required

(MethodCompletionIndicator)
The Card Range support query will also indicate if Method Data is required for that card. Method Data is

additional information about a Cardholder’s environment that is obtained by ACS via the Merchant

environment. The MethodCompletionIndicator field is set on the Merchant’s Authenticate request to

Platform. This field indicates if ACS has collected the Method Data (if applicable) from the Merchant. The

possible values and their meanings are detailed in the sections below:

When MethodCompletionIndicator = ‘Completed’
A MethodCompletionIndicator value of ‘Completed’ indicates that the ACS successfully collected the

applicable method data. If the MethodCompletionIndicator value is set to ‘Completed’ on the Merchant’s

Authenticate request, a ServerTransactionID is required for authentication. If a merchant does not set it,

Snap* will assign one for them.

When MethodCompletionIndicator = ‘NotCompleted’
This response indicates that the response from the ACS to the merchant was not received within 10

seconds.

When MethodCompletionIndicator = ‘Unavailable’
A MethodCompletionIndicator value of ‘Unavailable’ indicates that there is no method data for the ACS to

collect. If the MethodCompletionIndicator value is set to ‘Unavailable’ on the Merchant’s Authenticate

request, Platform will do a check against its own Card Range Cache to determine that method data is in fact

not supported. If there is no ThreeDSMethodURL for the card, no fault or corresponding error message will

be thrown. However, if a ThreeDSMethodURL is defined for the card, ‘Unavailable’ is not the correct

MethodCompletionIndicator value, and, in this case, an error is thrown stating “Method data is supported

for this card. Update the MethodCompletionIndicator and try again.”, thus ending the transaction workflow.

When MethodCompletionIndicator = ‘NotSet’
A MethodCompletionIndicator value of ‘NotSet’ may indicate that the card supports 3-D Secure 1.0 rather

than 2.2. If the MethodCompletionIndicator value is set to ‘NotSet’ on the Merchant’s Authenticate request,

Platform will do a check against its own Card Range Cache to determine concretely if 3-D Secure 2.2 is

supported.

If the card exists within Platform’s stored 3-D Secure 2.2 CardRanges, this indicates that the card is in fact 3-

D Secure 2.2 enrolled, and ‘NotSet’ is not the correct MethodCompletionIndicator value. Correct values for 3-

D Secure 2.2 enrolled cards include ‘Completed’ ‘NotCompleted’ and ‘Unavailable’. In this case, an error is

 Proprietary & Confidential 10

thrown, saying “3-D Secure 2.2 is supported for this card. Update the MethodCompletionIndicator and try

again.”

Protocol Support
Due to the many roles in the Authentication workflow, Snap* has added logic to submit the highest mutually

supported protocol in an Authentication request. This will guarantee the highest chance of a successful

Authentication.

The Merchant Application will only need to have knowledge of the highest version they support and submit

that value in the ProtocolVersion field on the request. The current release supports the following protocols:

1.0, 2.1 and 2.2. The Snap* Platform will execute protocol management based on this field, as well as Issuer

and Card Range support. For informational purposes, the following flow defines protocol support.

First, if the Merchant Application has not been updated to support any 2.0 workflows, Snap* will continue to

support the 3-D Secure 1.0 Authentication for those Merchants. Support for 1.0 only will be identified in the

request by setting ProtocolVersion to ‘v1_0’, Is3DSecure to ‘true’, and SupportsProtocolVersion1 to ‘true’.

Previous endpoint integration to 3-D Secure 1.0 will not be affected by these additional fields.

When a Merchant Application upgrades to the 2.0 workflow through the Snap* Platform, they will submit

ProtocolVersion as ‘v2_X_0’, X being defined as the highest minor version the Merchant Application would

like to support. If the Issuer does not yet support 2.0, there are still a few options for Authentication.

1. If the Merchant Application still supports 1.0 (indicated by SupportsProtocolVersion1 set to ‘true’),

the Authentication will fall back to the existing 3-D Secure 1.0 functionality. This will be the default

fallback if the Merchant Application submits a 3-D Secure 2.0 request but the Issuer does not

support 2.0. A successful Authentication will be returned as TransactionStatus

‘SuccessfullyAuthenticated’.

2. If the Merchant Application does not support 1.0 but the Merchant is registered for Data Insights

with MasterCard (indicated by SupportsDataOnly set to ‘true’), Snap* will send the transaction for 2.0

Data Only Authentication to the DS. The Data Insights program is available to Merchants who are

not required to support SCA, but would like the DS to do a risk analysis on their transaction and

submit that with the Authorization. This transaction type does not reach the ACS. A successful Data

Only Authentication will be returned as TransactionStatus ‘UnableToAuthenticate’, and

ProcessedAsDataOnly will be ‘true’.

3. If the Merchant Application does not support 1.0 or Data Insights, but the DS supports the Attempts

Server, Snap* will send the transaction for 2.0 Authentication to the DS Attempts Server. The

Attempts Server is a product provided by the card brands to act as an Authenticator on behalf of the

Issuer until the Issuer supports 2.0. The TransactionStatus in this workflow will be returned as

‘AttemptsProcessingPerformed’.

4. If the Merchant Application does not support 1.0, the Merchant Application is not registered for

MasterCard’s Data Insights, and the DS does not support the Attempts Server, the transaction will

return with ErrorCode ‘9000’ and ErrorDescription “Unable to process 3-D Secure. Issuer does not

support compatible protocol."

 Proprietary & Confidential 11

Note that Protocol Support is supported the same way for both Browser and Application-Based workflows.

Initial Authentication Request
The Merchant will send in an initial Authenticate call to Snap*. This initial request will contain all the new

required and conditional 3-D Secure 2.0 fields. There are four possible options on the Authenticate

response:

1. If the response returns as SuccessfullyAuthenticated, the Authentication data is returned to the

Merchant Application to be sent elsewhere for Authorization.

2. If the response returns as AttemptedProcessingPerfomed, the Merchant Application can attempt to

process the transaction elsewhere if that provider supports the 3-D Secure attempted workflow.

3. If the response returns as NotAuthenticated, AuthenticationRejected or UnableToAuthenticate, the

Merchant Application can attempt to process the transaction elsewhere as non-3-D Secure.

4. The final response option is Challenge Required, which is detailed in the section below.

Browser-Based Frictionless Authentication

Frictionless Authentication without Method Data (Authenticated Response

Workflow)

Method Data is additional information about the Cardholder’s browser obtained directly by ACS. In this

workflow, the ACS does not support/require Method Data (i.e. no ThreeDsMethodUrl exists for the Card

Range), and the additional 3-D Secure data is enough for the ACS to authenticate the transaction without

further interaction with the Cardholder.

In this scenario:

> Merchant Application either calls QuerySingleCard or queries their local cache to determine if Method

Data is supported for the Card Range. Query results indicate ThreeDsMethodUrl is not required for the

Card Range by returning null.

> Merchant Application sends in Authenticate call with Is3DSecure set to ‘true’,

MethodCompletionIndicator set to ‘Unsupported’, and other required 3-D Secure 2.0 fields.

> Authenticate response will contain both AuthenticationValue and AuthenticationECI

Frictionless Authentication with Method Data

In this workflow, the ACS supports Method Data (i.e. ThreeDsMethodUrl is defined on the Card Range). In

this scenario:

> Merchant Application either calls QuerySingleCard or queries their local cache to determine if Method

Data is supported for the CardRange.

o If the Merchant Application does not implement a local cache, Snap* Platform will query the

Platform cache and return single Card Range along with the base64-encoded

ThreeDSMethodData to be posted to the ACS URL.

 Proprietary & Confidential 12

o If Merchant Application has local cache, the ThreeDSMethodData can be created by

generating a unique 36-character ServerTransactionId string and base64 encoding the

ServerTransactionId and Merchant-defined NotificationURL. Please note this

ServerTransactionId should be included on the Authenticate request.

The Merchant Application will then interact with the ACS to pull browser information and retrieve Method

Data. To do this, Merchants should make a POST to the URL returned in the QuerySingleCard response if

they are using the Snap* cache.

The Merchant Application then sends in an Authenticate call with Is3DSecure set to ‘true’,

MethodCompletionIndicator set to ‘Completed’, and other required 3-D Secure 2.0 fields. If more

information is needed about how Method Data is exchanged through this process, consult the appropriate

card schemes or EMVCo specification here.

The required 3-D Secure 2.0 field listing will define the specific fields in the ThreeDSData and

ThreeDSMerchantData Objects highlighted in the sample request below:

RequestUri https://api.cipcert.goevo.com/2.1.35/REST/ThreeDSecure.svc/{serviceId}

Method POST

Authentication Session token set as Username on Authentication header

Request

{

"$type": "BankcardTransactionPro,

http://schemas.evosnap.com/CWS/v2.0/Transactions/Bankcard/Pro",

 "TenderData": {

"$type": "BankcardTenderDataPro,

http://schemas.evosnap.com/CWS/v2.0/Transactions/Bankcard/Pro",

 "CardData": {

 "CardType": 2,

 "CardholderName": "Johnny Cardholder",

 "PAN": "4539797605519795",

 "Expire": "1225",

 "ChipConditionCode": "9",

 "FallbackReason": 0,

 "StrongCardholderAuthSupport": 0

 },

 "CardSecurityData": {

 "CVDataProvided": 0

 },

 "CardholderIdType": 1,

 "TenderType": 0,

 "DeviceTypeIndicator": 0

 },

 "TransactionData": {

 "$type": "BankcardTransactionDataPro,

 http://schemas.evosnap.com/CWS/v2.0/Transactions/Bankcard/Pro",

 "AccountType": 0,

 "CashBackAmount": 5.5,

 "CustomerPresent": 0,

 "EmployeeId": "1234",

 "EntryMode": 1,

 "GoodsType": 1,

https://www.emvco.com/terms-of-use/?u=wp-content/uploads/documents/EMVCo_3DS_Spec_v220_122018.pdf

 Proprietary & Confidential 13

 "InternetTransactionData": {

 "IpAddress": "127.0.0.1",

 "SessionId": "12345",

 "BrowserAcceptHeader": "1",

 "BrowserJavaEnabled": 2,

 "BrowserJavaScriptEnabled": 2,

 "BrowserLanguage": "en-US",

 "BrowserScreenColorDepth": "16",

 "BrowserScreenHeight": "400",

 "BrowserScreenWidth": "300",

 "BrowserTimeZone": "+000",

 "BrowserUserAgent": "2"

 },

 "InvoiceNumber": "12345",

 "OrderNumber": "333",

 "SignatureCaptured": false,

 "TipAmount": 1.24,

 "Amount": 100.00,

 "CurrencyCode": 4,

 "TransactionDateTime": "2014-10-06T20:49:14Z",

 "Reference": "referenceTest",

 "IsPartialShipment": false,

 "FeeAmount": 0,

 "PartialApprovalCapable": 0,

 "ScoreThreshold": "scoreThresholdtest",

 "IsQuasiCash": false,

 "TransactionCode": 0,

 "Is3DSecure": true,

 "CardholderAuthenticationEntity": 5,

 "CardPresence": false,

 "IsQuickPaymentService": false,

 "EBTType": 0,

 "AmountTypeIndicator": 0,

 "ThreeDSData": {

 "AuthenticationIndicator": 1,

 "ChallengeWindowSize": 0,

 "MethodCompletionIndicator": 1,

 "RequestorAuthMethod": 0,

 "RequestorChallengeIndicator": 0,

 "ServerTransactionId": "45ec66e7-536e-43dd-827c-24fa3f8cfed1",

 "TransactionType": 0,

 "WhiteListStatus": 1,

 "PaymentTokenIndicator": 0,

 "DecoupledMaxTimeout": 0,

 "DecoupledRequestIndicator": 0,

 "ProtocolVersion": “v2_2_0”,

 "SupportsProtocolVersion1": false,

 "RequestorAuthData": null,

 "RequestorAuthTimestamp": "0001-01-01T00:00:00" },

 "ThreeDSMerchantData": {

 "AcquirerBIN": "654321",

 "Country": "USA",

 "MerchantBankId": "bank id",

 "MerchantCategoryCode": "1234",

 "MerchantId": "888888",

 "RequestorName": "MerchantName",

 "MerchantNumber": "TEST_NUMBER",

 "MerchantUrl": "http://www.evosnap.com",

 "MethodNotificationUrl": "http://methodnotification.url",

 "Name": "who are you",

 "NotificationUrl": "http://somenotification.url",

 "DeviceChannel": 2

 },

 Proprietary & Confidential 14

 "ThreeRIIndicator": 0,

 "TransactionStatusIndicator": 0

 },

 "ReportingData": {

 "Comment": "This is a comment",

 "Description": "12345678",

 "Reference": "12345678"

 },

 "IsOffline": false

}

Response

If the transaction was successfully Authenticated, a successful BankCardTransactionResponse will be

returned to the Merchant Application, indicating Authentication is complete. It will contain the following

fields needed for Authorization:

Parameter Data Type Description

ACSTransactionID String
Identifier assigned by the Access Control Server to

identify a single transaction.

AuthenticationECI String

Payment System-specific value provided by the Access

Control Server or Directory Server to indicate the results

of the attempt to authenticate the Cardholder

AuthenticationType Enum

Indicates the type of authentication method the Issuer

will use to challenge the Cardholder:
> NotSet

> Static

> OOB

> Decoupled

> Other

AuthenticationValue String

Payment System-specific value provided by the Access

Control Server or Directory Server using an algorithm

defined by Payment System. It is used to provide proof

of authentication.

ChallengeCancellation

Indicator
Enum

Indicator informing the Access Control Server and the

Directory Server that the authentication has been

canceled. This will only be returned on a

QueryAuthenticationResults Response:
> NotSet

> CardholderCancel

> RequestorCancel

> TransactionAbandoned

> TransactionTimeOut

> TransactionTimeoutCReqNotReceived

> TransactionError

> Unknown

DSTransactionID String
Identifier assigned by the Directory Server to identify a

single transaction.

 Proprietary & Confidential 15

MessageCategory Enum

Identifies the category of the message for a specific use

case:
> NotSet

> NonPayment

> Payment

ProtocolVersion Enum

The Protocol Version Number indicating which protocol

was used for Authentication:
> NotSet

> v1_0

> v2_1_0

> v2_2_0

ServerTransactionId String

Universally unique transaction identifier assigned by

Snap* or the Merchant App to identify a single

transaction. Snap* will define this value if merchant is

using their own Card Range Cache.

TransactionStatus Enum

This value defines the authentication status for

validation purposes. It is required for processing:
> SuccessfullyAuthenticated

> NotAuthenticated

> UnableToAuthenticate

> AttemptsProcessingPerformed

> ChallengeRequired

> DecoupledAuthenticationRequired

> AuthenticationRejected InformationalOnly

WhiteListStatus Enum

Enables the communication of trusted

beneficiary/whitelist status between the Access Control

Server, the Directory Server and the 3-D Secure

Requestor:
> NotSet

> IsWhiteListed

> IsNotWhiteListed NotEligible

> PendingConfirmation

> CardholderRejected

> StatusUnknown

If the transaction was not successfully authenticated, the response will include ThreeDSInformation

indicating why the Authentication failed:

Parameter Data Type Description

TransactionStatusReason Enum

Provides information on why the

transaction status field has the

specified value.
> NotSet

 Proprietary & Confidential 16

> CardAuthenticationFailed

> UnknownDevice

> UnsupportedDevice

> ExceedsAuthenticationFrequencyLimit

> ExpiredCard

> InvalidCardNumber

> InvalidTransaction

> NoCardRecord

> SecurityFailure

> StolenCard

> SuspectedFraud

> TransactionNotPermitted

> CardholderNotEnrolled

> TransactionTimeout

> LowConfidence

> MediumConfidence

> HighConfidence

> VeryHighConfidence

> ExceedsMaximumChallenges

> NonPaymentTransactionNotSupported

> ThreeRITransactionNotSupported

> ACSTechnicalIssue

> DecoupledRequiredButNotRequested

> DecoupledMaxExpiryExceeded

> DecoupledTimeout

> CardholderRefusedAuthentication

> Other

Application-Based Frictionless Authentication
There is no Method Data within the Application-Based workflow; therefore, the Merchant does not need to

consider the CardRangeCache. In this scenario, the Merchant Application interfaces with 3DS SDK to retrieve

and encrypt device information and sends in an Authenticate request with SDKInfo fields and other required

3-D Secure 2.0 fields set – the Application specific fields can be found on the Snap* Documentation Portal.

The Authenticate response will contain the Authentication approval details, including AuthenticationValue

and AuthenticationECI fields as proof of authentication and SDKResponseInfo. If a Challenge is required in

the Authenticate response, the same Challenge workflow is followed as the Browser-Based Authentication

and is detailed below.

Request
{

"$type": "BankcardTransactionPro,

http://schemas.evosnap.com/CWS/v2.0/Transactions/Bankcard/Pro",

 "TenderData": {

https://docs.evosnap.com/commerce-web-services/workflows/value-added-services/3dsecure-mpi/3d-secure-2-0-full-flow/

 Proprietary & Confidential 17

"$type": "BankcardTenderDataPro,

http://schemas.evosnap.com/CWS/v2.0/Transactions/Bankcard/Pro",

 "CardData": {

 "CardType": 2,

 "CardholderName": "Johnny Cardholder",

 "PAN": "4539797605519795",

 "Expire": "1225",

 "ChipConditionCode": "9",

 "FallbackReason": 0,

 "StrongCardholderAuthSupport": 0

 },

 "CardSecurityData": {

 "CVDataProvided": 0

 },

 "CardholderIdType": 1,

 "TenderType": 0,

 "DeviceTypeIndicator": 0

 },

 "TransactionData": {

 "$type": "BankcardTransactionDataPro,

 http://schemas.evosnap.com/CWS/v2.0/Transactions/Bankcard/Pro",

 "AccountType": 0,

 "CashBackAmount": 5.5,

 "CustomerPresent": 0,

 "EmployeeId": "1234",

 "EntryMode": 1,

 "GoodsType": 1,

 "InternetTransactionData": null,

 "InvoiceNumber": "12345",

 "OrderNumber": "333",

 "SignatureCaptured": false,

 "TipAmount": 1.24,

 "Amount": 100.00,

 "CurrencyCode": 4,

 "TransactionDateTime": "2014-10-06T20:49:14Z",

 "Reference": "referenceTest",

 "IsPartialShipment": false,

 "FeeAmount": 0,

 "PartialApprovalCapable": 0,

 "ScoreThreshold": "scoreThresholdtest",

 "IsQuasiCash": false,

 "TransactionCode": 0,

 "Is3DSecure": true,

 "CardholderAuthenticationEntity": 5,

 "CardPresence": false,

 "IsQuickPaymentService": false,

 "EBTType": 0,

 "AmountTypeIndicator": 0,

"ThreeDSData": {

 "AuthenticationIndicator": 1,

 "ChallengeWindowSize": 0,

 "MethodCompletionIndicator": 2,

 "RequestorAuthMethod": 0,

 "RequestorChallengeIndicator": 0,

 "SDKInfo": {

 "AppId": "a048702f-6bcc-402a-8c22-1c2a362b02c5",

 "DeviceRenderOptions": {

 "Interface": 1,

 "UIType": 1

 },

 "EncryptedData": "SomeEncryptedData",

 "MaxTimeout": 5,

 "PublicKey":

 Proprietary & Confidential 18

"eyJrdHkiOiJFQyIsImNydiI6IlAtMjU2IiwieCI6IlRFV0tSenk3S0t3cXZfWVZHbjV5bnBZc28xcVgxRjJnREVWbFB

kSEJzUzgiLCJ5IjoiSGVQQWxYM2laYWNTRTN6aGQ0ZU5WUnVUZ19hSDZNdG9nM0pTU21aV0tBUSJ9",

 "ReferenceNumber": "123",

 "TransactionId": "1d33eb63-88d4-40fa-8e8c-a9b0265cde95"

 },

 "ServerTransactionId": "84ae9a5a-f4e6-4fbd-8df1-20d208df927a",

 "TransactionType": 0,

 "PaymentTokenIndicator": 0,

 "AccountInfo": null,

 "AccountId": null,

 "MerchantRiskInfo": null,

 "DecoupledMaxTimeout": 0,

 "DecoupledRequestIndicator": 0,

 "ProtocolVersion": 3,

 "SupportsProtocolVersion1": true,

 "RequestorAuthData": null,

 "RequestorAuthTimestamp": "0001-01-01T00:00:00",

 "ThreeRIIndicator": 0,

 "IsInterRegionalTransaction": false,

 "IsAnonymousPrepaidTransaction": false,

 "ExemptionInfo": null,

 "DeviceChannel": 1

 }

 "ThreeDSMerchantData": {

 "AcquirerBIN": "654321",

 "Country": "USA",

 "MerchantBankId": "bank id",

 "MerchantCategoryCode": "1234",

 "MerchantId": "888888",

 "RequestorName": "MerchantName",

 "MerchantNumber": "TEST_NUMBER",

 "MerchantUrl": "http://www.evosnap.com",

 "MethodNotificationUrl": "http://methodnotification.url",

 "Name": "who are you",

 "NotificationUrl": "http://somenotification.url",

 "DeviceChannel": 1

 },

 "TransactionStatusIndicator": 0

 },

 "ReportingData": {

 "Comment": "This is a comment",

 "Description": "12345678",

 "Reference": "12345678"

 },

 "IsOffline": false

}

Response

{

 "AdviceResponse": 0,

 "CommercialCardResponse": 0,

 "ReturnedACI": "NotSet",

 "Amount": 1.00,

 "CardType": 2,

 "FeeAmount": 0.0,

 "Status": 2,

 "StatusCode": null,

 "StatusMessage": "Service temporarily unavailable.",

 "TransactionId": "7B113CAFA216430EAC88C98DFD72E4F6",

 "ApprovalCode": "",

 "AVSResult": null,

 Proprietary & Confidential 19

 "OriginatorTransactionId": "402",

 "BatchId": "",

 "ServiceTransactionId": "",

 "CVResult": 0,

 "ServiceTransactionDateTime": {

 "Date": null,

 "Time": null,

 "TimeZone": null

 },

 "CardLevel": "",

 "Addendum": null,

 "DowngradeCode": "",

 "CaptureState": 6,

 "MaskedPAN": "402400XXXXXX8834",

 "TransactionState": 6,

 "PaymentAccountDataToken": "7b113caf-a216-430e-ac88-c98dfd72e4f6a3a5b186-71ed-4352-

bc48-8f898d8e4cfb",

 "IsAcknowledged": false,

 "RetrievalReferenceNumber": "",

 "Reference": "84ae9a5a-f4e6-4fbd-8df1-20d208df927a",

 "Resubmit": 0,

 "TransmissionNumber": null,

 "SettlementDate": "0001-01-01T00:00:00",

 "TransactionCode": "",

 "FinalBalance": null,

 "HostMessageId": "",

 "OrderId": "302",

 "Geolocation": null,

 "CashBackAmount": 0.0,

 "TerminalAccessToken": null,

 "PrepaidCard": 0,

 "Expire": "1225",

 "ErrorType": "",

 "AuthorizationServerUrl": "",

 "PaymentAuthorizationRequest": "",

 "ProcessedAs3D": false,

 "EMVDataResponse": null,

 "Level3Added": 0,

 "LastPANDigits": "8834",

 "BatchAmount": 0.0,

 "MessageAuthenticationCode": "",

 "TokenInformation": null,

 "ForcePostCode": "",

 "MerchantId": "123456789012",

 "TerminalId": "001",

 "BankResponseCode": "",

 "InitialEncryptionKeys": null,

 "IsPartialApproval": false,

 "EBTAvailableBalance": {

 "CashAvailableBalance": 0.0,

 "SNAPAvailableBalance": 0.0

 },

 "IndustryType": 2,

 "ThreeDSecureInformation": null,

 "ThreeDSInformation": {

 "TransactionStatus": 0,

 "AuthenticationECI": null,

 "DSTransactionId": null,

 "IsChallengeMandated": false,

 "ChallengeRequest": null,

 "ChallengeCancellationIndicator": null,

 "TransactionStatusReason": 0,

 "AuthenticationValue": null,

 Proprietary & Confidential 20

 "ACSTransactionId": null,

 "AuthenticationType": 0,

 "CardholderInformationText": null,

 "DSReferenceNumber": null,

 "ErrorCode": null,

 "ErrorDetail": null,

 "ErrorDescription": "Service temporarily unavailable.",

 "AcsUrl": null,

 "MerchantId": null,

 "MessageCategory": 0,

 "ProtocolVersion": 0,

 "ServerTransactionId": null,

 "WhiteListStatus": 0,

 "TokenResult": "",

 "Protocol1": null,

 "SCARequired": false,

 "ReasonForNotHonoringExemption": "",

 "ExemptionControl": 0,

 "SDKResponseInfo": {

 "ACSOperatorId": "AcsOpId_4138359541",

 "ACSReferenceNumber": "3DS_LOA_ACS_PPFU_020100_00009",

 "ACSRenderingType": {

 "Interface": "Native",

 "UITemplate": "Text"

 },

 "ACSSignedContent": "",

 "AppId": "",

 "MaxTimeout": "5",

 "TransactionId": "1d33eb63-88d4-40fa-8e8c-a9b0265cde95"

 },

 "AuthenticationTimestamp": "0001-01-01T00:00:00",

 "AuthenticationMethod": 1

 },

 "SystemTraceAuditNumber": "",

 "MACTransmissionNumber": ""

}

Challenge Authentication Response
Alternatively, the response can indicate a Challenge is required. This workflow can occur as an extension to

Frictionless Authentication, with or without Method Data. When the Challenge workflow is invoked, the

initial Authenticate call returns a TransactionStatus of ‘ChallengeRequired’ on the response in

ThreeDSInformation. The Issuer or the Merchant could request a Challenge for reasons such as the

transaction amount is above defined limit or the browser information is not recognized. Examples of

Challenges are SMS or email verification.

Response to Original Authenticate Call

"ThreeDSInformation": {

 "TransactionStatus": "ChallengeRequired",

 "AuthenticationECI": null,

 "DSTransactionId": null,

 "IsChallengeMandated": true,

 "ChallengeRequest":

 "eyJtZXNzYW...SI6IjAxIn0",

 "ChallengeCancellationIndicator": null,

 "TransactionStatusReason": "NotSet",

 "AuthenticationValue": null,

 "ACSPublicKey": null,

 Proprietary & Confidential 21

 "ACSOperatorId": null,

 "ACSReferenceNumber": null,

 "ACSRenderingInterface": "NotSet",

 "ACSRenderingUITemplate": "NotSet",

 "ACSSignedContent": null,

 "ACSTransactionId": null,

 "AuthenticationType": "NotSet",

 "CardholderInformationText": null,

 "DSReferenceNumber": null,

 "ErrorCode": null,

 "ErrorDetail": null,

 "ErrorDescription": null,

 "AcsUrl": "https://mockacsds.cipdev2.local/visa",

 "MerchantId": null,

 "MessageCategory": "NotSet",

 "ProtocolVersion": "NotSet",

 "ServerTransactionId": null,

 "WhiteListStatus": "NotSet"

}

QueryAuthenticationResults with Challenge Response
After the Authenticate response indicates a Challenge is required, the Merchant Application must complete

the Challenge workflow with the Cardholder.

To initiate the Challenge, the Merchant Application posts the value of the Challenge Request field to the

AcsURL that was returned on the Decline response to the original Authenticate. The ACS interacts with the

Cardholder directly through a visible iFrame created in the Cardholder’s browser and sends the Challenge

Response to the Merchant-defined NotificationURL when the Cardholder-ACS interaction is completed. If

more information is needed about how the Challenge data is exchanged through this process, consult the

appropriate card schemes.

After the Merchant App receives this Challenge Response, the merchant must call

QueryAuthenticationResults with the Challenge Response data returned from the ACS as a string.

RequestUri https://api.cipcert.goevo.com/2.1.35/REST/ThreeDSecure.svc/results/{serviceId}

Method POST

Authentication Session token set as Username on Authentication header

Request

“AuthenticationQueryParameters": {

 “TransactionId": "8D5E9BC4B84B46A9A1693AC8BF1C4FF7",

 “ChallengeResponse": "challenge response",

 },

If the transaction was successfully 3-D Secure authenticated, the response will include the same

Authentication fields from BankCardTransactionResponse Table above. If the transaction was not

successfully 3-D Secure authenticated, the response will include the same ThreeDSInformation indicating

why the Authentication failed:

 Proprietary & Confidential 22

Exemptions

Snap* offers the benefit of Exemptions for the 3-D Secure as a Service workflow. Exemptions from the

Challenge exist for low risk transactions and enable a greater percentage of Frictionless flow transactions. If

a transaction qualifies as an exemption, the cardholder is available and known, but a request for no

challenge authentication is made. There are six types of exemptions that are defined below:

1. Whitelisted Merchants

Cardholders can add Merchants to their whitelist of Merchants either during a Challenge flow or via

their online banking application. If the Merchant Application would like to request the Cardholder is

prompted to whitelist the Merchant, the following field must be set:

BankcardTransactionData/ThreeDSData/RequestorChallengeIndicator is

ChallengeRequestedWhitelist.

The Issuer keeps a database of whitelisted Merchants for each Cardholder. If a Merchant is

whitelisted, Authentication will not be required. Snap* will return a WhitelistStatus indicating if the

Merchant is whitelisted. Snap* will identify Whitelist exempted transactions as any

“AuthenticationQueryParameters": { “TransactionId": "8D5E9BC4B84B46A9A1693AC8BF1C4FF7",

“ChallengeResponse": "challenge response", }, payment where:

o BankcardTransactionData/ThreeDSData/ExemptionInfo/IsWhitelisted is true and

o BankcardTransactionData/ThreeDSData/RequestorChallengeIndicator is

NoChallengeWhitelist

2. Secure Corporate Payments (B2B) Transactions

For Secure Corporate (B2B) Transactions, Merchant Applications can indicate to the Issuer that the

payment is being initiated using a secure process or protocol – for example a physical card used

within a secure corporate procurement system or process. Snap will identify Secure Corporate

Payment exempted transactions as any payment where:

o BankcardTransactionData/ThreeDSData/ExemptionInfo/IsSecureCorporate is true and

o BankcardTransactionData/ThreeDSData/RequestorChallengeIndicator is

NoChallengeRequestedRiskAnalysis

3. Low Value

Any transaction under 30 Euros is exempt from 3-D Secure Authentication. After the fifth

consecutive Low Value exempted transaction, Authentication will again be required. Additionally, if

the cumulative transaction amount with Low Value exemption exceeds 100 Euros, Authentication

will again be required. The Exemption should be used as the last resort.

o BankcardTransactionData/ThreeDSData/ExemptionInfo/IsLowValue is true.

4. Low Risk

The initial release will not include any ability for Snap* to assess risk on behalf of the Merchant.

However, the Merchant Application may request the Low Risk exemption based on any risk

assessment they have done outside of the Snap* platform. Snap* will identify a Low Risk exempted

transactions as any payment where:

 Proprietary & Confidential 23

o BankcardTransactionData/ThreeDSData/ExemptionInfo/IsLowRisk is true.

5. Recurring/Installment Payments

MasterCard allows the Recurring Payment exemption to be set as a request for Exemption. Snap*

will identify a Recurring or Installment exempted transaction as any payment where:

o BankcardTransactionData/ThreeDSData/ExemptionInfo/IsRecurring is true.

6. Delegated SCA

Delegated SCA is where the transaction is authenticated by a third-party Authenticator who is

certified to the individual card brands. Issuers and Acquirers are then able to delegate

authentication to these third-party Authenticators. Delegated Authenticators authenticate the

Cardholder with two-factor authentication. Authenticator categories include:

o Device Authenticators (usually biometrics on mobile or PC device)

o Wallet Authenticators (applications often take advantage of device authenticators)

o Merchant Authenticators (Merchant Applications that meet SCA requirements as part of

normal processing)

Since many existing applications have been using these Authenticators since their creation, the Delegated

SCA Exemption is meant to eliminate the need for SCA to be performed twice (leading to poor customer

experience). For new applications, Delegated Authentication offers Merchant Applications the ability to take

full control of the Challenge flow leading to better customer experience.

If the Merchant Application takes advantage of Delegated Authentication, they can identify the Delegated

SCA Exemption by setting: BankcardTransactionData/ExemptionInfo/IsDelegatedSCA is true

BankcardTransactionData/ThreeDSData/RequestorChallengeIndicator is NoChallengeRequestedStrongAuth

To submit any of the Exemptions in the 3-D Secure as a Service workflow, ExemptionControl must be set to

‘AuthenticationFlow’.

The supported card brands have varying support for each of these Exemptions on the available protocols

and will be supported in the following way:

> MasterCard transactions will be available to submit exempted transactions for Authentication in a 2.1 or

2.2 protocol message.

> Visa transactions will not be available to submit for Authentication with an Exemption set due to the

limitation of the Visa 2.1 implementation. Visa will allow Exemptions only in a 2.2 integration.

Submitting an Exempted Transaction Request

When submitting the initial request for a 3-D Secure 2.0 exempted transaction, the Merchant Application is

still required to populate all required and desired conditional 3-D Secure 2.0 fields. This is in case the Issuer

rejects the Exemption.

If the Issuer rejects the Exemption, Snap* will return a decline response to the Merchant Application

indicating a challenge is required, and the normal Challenge Authentication flow is executed. The Merchant

 Proprietary & Confidential 24

Application will call QueryAuthenticationResults with ChallengeResponse as part of the standard Challenge

flow.

If the issuer accepts the Exemption, Snap* responds to the Merchant Application with Transaction Status

InformationalOnly and the Issuer ReasonForNotHonoring. The Merchant Application then submits an

Authorization outside of Snap*. If the issuer then declines the Exemption, the Merchant Application should

call a new Authenticate without Exemption and RequestorChallengeIndicator set to

ChallengeRequestedMandated or ChallengeRequestedPreference. The transaction then goes through the

standard Challenge Authentication workflow for 3-D Secure as a Service.

Below is an example of a MasterCard Exemption Request transaction for 2.2.

 {

 "$type": "BankcardTransactionPro,

http://schemas.evosnap.com/CWS/v2.0/Transactions/Bankcard/Pro",

 "CustomerData": null,

 "TenderData": {

 "$type": "BankcardTenderDataPro,

http://schemas.evosnap.com/CWS/v2.0/Transactions/Bankcard/Pro",

 "EMVData": null,

 "CardData": {

 "CardType": "MasterCard",

 "CardholderName": "Spintax the Green",

 "PAN": "5307808167635130",

 "Expire": "0523"

 }

 },

 "TransactionData": {

 "Amount": 1,

 "CurrencyCode": "USD",

 "TransactionDateTime": "2020-05-28T08:01:38",

 "EntryMode": "Keyed",

 "InternetTransactionData": {

 "IpAddress": "127.0.0.1",

 "SessionId": "12",

 "BrowserAcceptHeader": "1",

 "BrowserJavaEnabled": "True",

 "BrowserJavaScriptEnabled": "True",

 "BrowserLanguage": "en-US",

 "BrowserScreenColorDepth": "1",

 "BrowserScreenHeight": "02",

 "BrowserScreenWidth": "02",

 "BrowserTimeZone": "+000",

 "BrowserUserAgent": "02"

 },

 "Is3DSecure": "true",

 "ThreeDSData": {

 "AuthenticationIndicator": "Payment",

 "ChallengeWindowSize": "Size390X400",

 "MethodCompletionIndicator": "Completed",

 "PriorTransactionId": "2",

 "RequestorAuthMethod": "None",

 "RequestorChallengeIndicator": "ChallengeRequestedMandate",

 "ServerTransactionId": "DE7B9338-1AE9-49AD-8390-FFCDEAABB5D9",

 "TransactionType": "CheckAcceptance",

 "PaymentTokenIndicator": "NotSet",

 "AccountId": "",

 "DecoupledMaxTimeout": "0",

 "DecoupledRequestIndicator": "NotSet",

 "ProtocolVersion": "v2_2_0",

 Proprietary & Confidential 25

 "SupportsProtocolVersion1": "true",

 "RequestorAuthTimestamp": "2020-05-06T21:12:25.047Z",

 "ExemptionInfo": {

 "ExemptionControl": "AuthenticationFlow",

 "IsSecureCorporate": "true"

 }

 },

 "ThreeDSMerchantData": {

 "AcquirerBIN": "654321",

 "Country": "USA",

 "MerchantBankId": "ID",

 "MerchantCategoryCode": "0000",

 "MerchantId": "1",

 "RequestorName": "Acme_Corp",

 "MerchantNumber": "2222",

 "MerchantUrl": "www.evosnap.com",

 "MethodNotificationUrl": "https://www.acs.com/script",

 "Name": "Acme_Corp",

 "NotificationUrl": "www.notification.url",

 "DeviceChannel": 2

 }

}

}

Note that Exemptions are supported the same way for both Browser and Application-Based workflows.

Authorization
After authenticating the 3-D Secure transaction through the Snap* platform, Merchants may submit their

transaction to whomever is responsible for Authorization, including the fields returned in the

ThreeDSInformation on the Response.

Card on File for Non-Payment Transactions
There are two possible options to manage a card on file without processing a payment:

1. A card can be added to the account

2. A card on file can be updated on the account.

Challenge Authentication is required when the Cardholder is managing the Cards on an account. Note that

all 3-D Secure 2.0 required and conditional fields still need to be sent for these non-payment transactions.

Adding Card on File without Processing Payment
Merchant Applications indicate a card is being added by setting BankcardTransactionData/CardOnFileInfo/

CardOnFile to First. Per SCA mandate, all First Merchant initiated transactions will require authentication.

Merchant Applications will call Verify with BankcardTransactionData/Is3DSecure as True and

BankcardTransactionData/CardOnFileInfo/InitiatedBy as Cardholder. Optional fields that can be set are

BankcardTransactionData/ThreeDSData/RequestorChallengeIndicator as NotSet or

ChallengeRequestedMandated and BankcardTransactionData/ThreeDSData/AuthenticationIndicator as

NotSet or AddCard. If sent as NotSet these fields will default to these values.

 Proprietary & Confidential 26

Finally, the Merchant Application will call QueryAuthenticationResults for the Challenge completion and will

follow the workflow detailed above. ACSTransactionId and DSTransactionId are returned on the

BankcardTransactionResponse to be submitted for Authorization outside of Snap*. These values must be

stored to process subsequent Authorizations for this Card on File.

Updating Existing Card on File without Processing Payment
If the card on file is updated by the cardholder, then a new Challenge is required. Again, Merchant

Applications will call Verify with BankcardTransactionData/Is3DSecure as True,

BankcardTransactionData/CardOnFileInfo/ CardOnFile as Repeat,

BankcardTransactionData/CardOnFileInfo/InitiatedBy as Cardholder and

BankcardTransactionData/ThreeDSData/AuthenticationIndicator as MaintainCard, and Amount as Zero.

Repeat Card on File transactions require a reference to the First Card on File transaction. Whether the

Merchant Application is using Snap* tokenization or Third Party Tokenization, the Repeat Card on File

transaction will require the appropriate reference field to be set. See the Tokenization section below for

more details.

Optionally, BankcardTransactionData/ThreeDSData/ RequestorChallengeIndicator can be set as NotSet or

ChallengeRequestedMandated.

If the update is initiated by the Merchant, Authentication is not required.

Tokenization

Merchants Using Snap* Tokenization

For Merchant Applications using Snap* tokenization, Repeat Card on File transactions must be tokenized

transactions with TenderData/PaymentAccountDataToken set to the PaymentAccountDataToken returned

on the First Card on File transaction response.

Merchants Using Third Party Tokenization

The Merchant Application receives the reference ID on their First Card on File transaction response as

TransmissionNumber. The Merchant Application must then submit CardOnFileInfo/OriginalTransactionId as

the TransmissionNumber from the First Card on File transaction. Field length for TransmissionNumber is

expected to be 20 characters.

Note that Card on File transactions are supported the same way for both Browser and Application-Based

workflows.

