

CommerceDriver™
Quick-Start Guide for Android®

CommerceDriver™ Quick-Start Guide for Android

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Android 2

EVO CommerceDriver™.. 3

How It Works ... 3

Version Details .. 3

Compatibility ... 3

Integration .. 4

Authentication... 4

Terminal Setup .. 6

Terminal Service Management (TSM) .. 8

Transaction Processing .. 10

Unsuccessful Calls.. 18

Reference Information ... 19

CommerceDriver™ Quick-Start Guide for Android

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Android 3

EVO CommerceDriver™
Adding EMV transaction processing to your POS system is easy with the pre-certified EVO

CommerceDriver™ SDK. The pre-certified CommerceDriver™ SDK installs alongside your software

application to add EMV transaction processing to your POS system. CommerceDriver™ facilitates

all transactional communication with the EVO Payments International global processing platforms

and approved hardware devices to isolate payment data and keep it separate from the software

application.

CommerceDriver™ is designed to support multiple terminal manufacturers while retaining a

common API. At startup, CommerceDriver™ detects the supported terminal

manufacturer(s)/models for processing Authorize, Authorize & Capture, and Return transactions.

How It Works
1. Create transaction data objects in your POS.

2. Pass the transaction data to CommerceDriver™.

3. CommerceDriver™ initiates terminal commands and gathers tender/EMV data to send to

the EVO Snap* Platform.

4. The EVO Snap* Platform returns a response to CommerceDriver™ with receipt details.

Version Details
 CommerceDriver™ - v2.34.4

 Supports EVO Snap* v2.1.34 Platform calls

 Supported Terminals

o Ingenico ICMP via Bluetooth

o Ingenico iPP320/iPP350 via Ethernet

o BBPOS Chipper OTA via Audio Jack

o BBPOS Chipper BT via Bluetooth

Compatibility
 CommerceDriver™ Framework – Android API Level 23+ (Marshmallow)

CommerceDriver™ Quick-Start Guide for Android

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Android 4

Google Play Services

Google Play Services is required for Commerce Driver to work. Check for Google Play Services in

your application using GoogleApiAvailability.

Integration

Add to Project

To use CommerceDriver™ in Android, you must first add CommerceDriver™ to your project:

dependencies {

 implementation 'com.evosnap.android:commerce-driver:2.29.0'

 // OR

 // inspect pom.xml for additional dependencies

 implementation project(path: 'path-to-commerce-driver)

}

Initialize Instance
CommerceDriver commerceDriver = new CommerceDriver("applicationProfileId", "serviceKey");

Authentication

First Login

Prior to using CommerceDriver™ in full, the user must do the following:

 For a first time login with a temporary password, use

CommerceDriver.changePassword(String, String, String) method with the username,

temporary password, and a new password.

 Then, use the CommerceDriver.loginWithUsernameAndPassword(String, String) with your new

password.

Subsequent Login

On the first and subsequent login without a temporary password, there are a few account related

calls one should make to finish setting up the account:

 Check the password expiration with CommerceDriver.getUserExpiration(String, String)

 Check if the user has answered security questions with

CommerceDriver.getSecurityQuestions()

https://developers.google.com/android/reference/com/google/android/gms/common/GoogleApiAvailability

CommerceDriver™ Quick-Start Guide for Android

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Android 5

 If security questions haven’t been answered, get the list of available questions with

CommerceDriver.getAvailableSecurityQuestions()

 Set up security questions with CommerceDriver.updateSecurityQuestions(String, String,

List<SecurityAnswer>)

Login

try {

 CommerceDriver commerceDriver = new CommerceDriver("applicationProfileId", "serviceKey");

 LoginResponse response = commerceDriver.loginWithUsernameAndPassword("username", "password");

 // Success

} catch (SnapSessionError e) {

 // Something went wrong

} catch (SnapApiError e) {

 // An API error occurred

 ApiResponse error = e.getErrorResponse();

 // Look at the error to see what happened

} catch (SnapConnectionError e) {

 // A network problem occurred

} catch (SnapSyncAccountError e) {

 // A problem occurred when syncing your account

}

Security Questions

After login, it is important to make sure that security questions have been answered.

Security questions are used to recover forgotten or lost passwords. It is still possible to recover a

password if security questions are not set, however this process is longer and requires contacting

a customer support representative.

Check if Security Questions Have Been Answered

Use CommerceDriver.getSecurityQuestions() to get a list of questions that the user has

answered.

If the user has not answered a sufficient number of security questions, (e.g. 3), then they should

be prompted to answer security questions.

try {

 SecurityQuestionsResponse response = CommerceDriver.getSecurityQuestions();

 List<SecurityQuestion> questions = response.getQuestions();

 if (questions.size() >= RECOMMENDED_SECURITY_QUESTIONS_ANSWERED) {

 // user has answered an appropriate number of security questions

 } else {

 // user should be prompted to answer security questions

 }

} catch (SnapConnectionError e) {

 // a connection error occurred, maybe the network is down or similar

} catch (SnapApiError e) {

 // an api error occurred, maybe the user credentials were invalid

}

CommerceDriver™ Quick-Start Guide for Android

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Android 6

Get Available Questions to Answer

If the user needs to answer questions, the list of questions can be retrieved via

CommerceDriver.getAvailableSecurityQuestions():

try {

 SecurityQuestionsResponse response = CommerceDriver.getAvailableSecurityQuestions();

 List<SecurityQuestion> questions = response.getQuestions();

 if (questions.isEmpty()) {

 // something went wrong on the platform

 } else {

 // offer the security questions to the user to answer

 }

} catch (SnapConnectionError e) {

 // a connection error occurred, maybe the network is down or similar

} catch (SnapApiError e) {

 // an api error occurred, maybe the user credentials were invalid

}

Answer Security Questions

Once the user has selected security questions and answers, then

CommerceDriver.updateSecurityQuestions(String, String, List<SecurityAnswer>) can be called

to update:

try {

 List<SecurityAnswer> answers = // create a list of answered security questions for password retrieval

 UpdateSecurityQuestionsResponse response = CommerceDriver.updateSecurityQuestions("some_user", "some_pas

sword", answers);

 // security questions have been answered if no exception is thrown

} catch (SnapConnectionError e) {

 // a connection error occurred, maybe the network is down or similar

} catch (SnapApiError e) {

 // an api error occurred, maybe the user credentials were invalid

}

Password Expiring Soon

The user password expiration should be checked at each login. The password can be changed at

any time, but if the password is expiring relatively soon, then follow these steps:

 Offer the user to change the password via CommerceDriver.changePassword(String, String,

String).

 Logout with CommerceDriver.logout().

 Re-login with CommerceDriver.login(String, String) using the changed password.

Terminal Setup

Add a Terminal

Use CommerceDriver.addTerminal(Terminal) to add a terminal. If the terminal was added

successfully, the method will return true. Terminals are identified with an id, so each time a new

CommerceDriver™ Quick-Start Guide for Android

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Android 7

terminal is added, it must have a unique id or the CommerceDriver.addTerminal(Terminal) will

return false.

Terminal objects are created using separate terminal libraries.

Multiple terminals may be added.

boolean added = commerceDriver.addTerminal(aTerminal);

if (added) {

 // success

} else {

 // failure - a terminal with the given id may have already been added

}

Initialize The Terminal

Initialization is required prior to using a terminal. After adding a terminal with

CommerceDriver.addTerminal(Terminal), a call to

CommerceDriver.initializeTerminal(InitializeTerminalRequest) should be made to initialize the

terminal.

No other requests to the terminal can be made if the initialization call is not made:

commerceDriver.initializeTerminal(myInitializeTerminalRequest);

Selecting Terminals

Use CommerceDriver.selectTerminal(String) to select a terminal after it has been added. If multiple

terminals were added with CommerceDriver.addTerminal(Terminal) then this method is how one

would change terminals.

Using Terminals

Requests to terminals have a listener as part of the request to receive the results of the request.

See below for available requests to the terminal:

Check the Battery

If a terminal has a battery, then the CommerceDriver.checkBatteryStatus(CheckBatteryRequest)

may be called to check the battery level.

Check the Connectivity

To check if a connection can be made to the terminal, use the

CommerceDriver.checkTerminalConnection(CheckConnectionRequest) method.

CommerceDriver™ Quick-Start Guide for Android

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Android 8

Printing

Printing receipts can be called by creating a PrintReceiptRequest which returns a

PrintReceiptResponse. Not all terminals support printing.

Cancelling

Terminal requests may be flagged for cancellation with CommerceDriver.cancelRequest().The

request and the current state of the request will dictate if a cancellation is honored.

Shutting Down

To safely close a terminal connection and instance, a call to

CommerceDriver.shutdownTerminal(ShutdownTerminalRequest) should be made. If the request

succeeds, then the terminal should no longer be used, and the terminal should be removed

from CommerceDriver™ via CommerceDriver.removeTerminalById(String).

Removing a Registered Terminal

In version 2.33, a completion block was added to the RemoveTerminal method in

EVOCommerceDriverAPI.

Terminal Service Management (TSM)
The InitializeTerminal method of the CommerceDriver™ object now provides information if an

update is available for the terminal currently in use. Users must be signed on to their instance of

CommerceDriver™ in order for the initialize terminal process to begin and for the terminal to

begin checking for updates. This sign on procedure can be found for each operating system in

their respective Quick Start Guides. After performing the steps to authenticate and add a terminal,

check the response from the initializeTerminal() method to determine if updates are available.

Code Snippets

To initialize a terminal in Java, call the initializeTerminal() method in CommerceDriver™. This

method runs asynchronously and returns an ConnectionResult, which contains a Boolean

isUpdateAvailable() as well as a list of available updates via getUpdates().

Example code to call and handle the completion of the initializeTerminal() method can be found

below:

CommerceDriver™ Quick-Start Guide for Android

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Android 9

InitializeTerminalResult

class TerminalConnectCallable implements Callable<ConnectResponse> {

 private final CommerceDriver commerceDriver;

 public TerminalConnectCallable(CommerceDriver commerceDriver) {

 this.commerceDriver = commerceDriver;

 }

 @Override

 public ConnectResponse call() throws Exception {

 return commerceDriver.connectTerminal();

 }

}

// MainActivity

 @Override

 public void connectSelectedTerminal() {

 TerminalConnectCallable callable = new TerminalConnectCallable(commerceDriver);

 CallableTask<ConnectResponse> task = new CallableTask<ConnectResponse>(callable);

 task.setUiCallback(this);

 task.setResultCallback(new CallableTaskResultCallback<ConnectResponse>() {

 @Override

 public void onReturnException(Exception exception) {

 // Exception handling here

 }

 @Override

 public void onReturnResult(ConnectResponse response) {

 if (response.isUpdateAvailable()) {

 // Terminal has an update. Can prompt dialog here and move on, or start update

flow.

 }

 // Connected with no updates available.

 }

 });

 task.execute();

}

package com.evosnap.commercedriver.terminal;

import com.evosnap.commercedriver.cws.terminal.AvailableUpdateInfo;

import java.util.List;

public interface ConnectResponse {

 Result getResult();

 String getErrorMessage();

 List<AvailableUpdateInfo> getUpdates();

 boolean isUpdateAvailable();

 enum Result {

 CONNECTED,

 INVALID_TERMINAL_ID,

 SESSION_REQUIRED,

 TERMINAL_ERROR,

 }

}

CommerceDriver™ Quick-Start Guide for Android

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Android 10

If the isUpdateAvailable property of the TerminalUpdate object is true, call the

DownloadAndApplyUpdate method as described below before the terminal update deadline date.

IMPORTANT! If a terminal has not downloaded the available terminal updates by the associated

deadline date, the terminal will be deactivated, preventing any future transactions.

For more information on downloading and applying terminal updates, or the TSM feature as a

whole, please see the TSM User Guide.

Transaction Processing
Two transaction sets can be processed using CommerceDriver™.

1. Terminal Required Transactions

 Authorize

 Authorize and Capture

 Return Unlinked

2. No Terminal Required Transactions

 Undo

 Capture

 Return by ID

Starting a Transaction

Transactions can be started by calling commerceDriver.startTerminalTransaction(builder.build()).

The following example demonstrates how to start a transaction.

1. First, create a simple fragment that implements TransactionEventListener. This allows for

handling of various UI events that may be triggered throughout a transaction.

public class TransactionFragment extends Fragment implements View.OnClickListener, TransactionEventLis

tener {

private PosRequest createPosRequest() {

2. In previous versions of CommerceDriver™, authorization types were set in the

authorization call commercedriver.authorize(posRequest), but are now simply defined in the

posRequest, as shown below:

 AuthType authType = AuthType.AUTH_AND_CAP;

 PosRequest.Builder builder = new PosRequest.Builder(authType);

https://docs.evosnap.com/wp-content/uploads/2019/08/TSM-User-Guide-for-CD_AOS_External.pdf

CommerceDriver™ Quick-Start Guide for Android

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Android 11

3. After defining what type of authorization request to send, populate the rest of the

posRequest using its builder.

 builder.setPurchaseAmount(<double>);

 builder.setOrderNumber(<String>);

 builder.setEmployeeId(<String>);

 builder.setLandeId(<String>);

 builder.setReference(<String>);

 builder.setTransactionDateTime(<Date>);

 builder.setTenderType(TenderType.ProcessAsCredit);

4. An event listener is added to the posRequest object, as well. This will return all UI related

events for the transaction, such as a signature or CVV request dialogue. In the sample, the

Android fragment responsible for running transactions is passed in:

 builder.setTransactionEventListener(this);

5. Lastly, return the builder:

 return builder.build();

}

Now that the posRequest has been built, a terminal transaction can be started with

CommerceDriver™ elsewhere in the application, such as a Start Transaction button click event.

@Override

public void onClick(View v) {

 PosRequest posRequest = createPosRequest();

 commerceDriver.startTerminalTransaction(posRequest)

}

Transaction Example – Process as Debit

Most transactions will look primarily the same with the minor differences shown in building the

posRequest.

In this instance, to process as PIN Debit, the TenderType enum is changed to reflect this:

AuthType authType = AuthType.AUTH_AND_CAP;

 PosRequest.Builder builder = new PosRequest.Builder(authType);

 builder.setPurchaseAmount(<double>);

CommerceDriver™ Quick-Start Guide for Android

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Android 12

 builder.setOrderNumber(<String>);

 builder.setEmployeeId(<String>);

 builder.setLandeId(<String>);

 builder.setReference(<String>);

 builder.setTransactionDateTime(<Date>);

builder.setTenderType(TenderType.ProcessAsPinDebit);

Transaction Example – Return Unlinked

Most components of this transaction type remain unchanged, but the authorization piece is

changed from AUTH_AND_CAP to RETURN_UNLINKED:

 AuthType authType = AuthType.RETURN_UNLINKED;

 PosRequest.Builder builder = new PosRequest.Builder(authType);

 builder.setPurchaseAmount(<double>);

 builder.setOrderNumber(<String>);

 builder.setEmployeeId(<String>);

 builder.setLandeId(<String>);

 builder.setReference(<String>);

 builder.setTransactionDateTime(<Date>);

 builder.setTenderType(TenderType.ProcessAsCredit);

 builder.setTransactionEventListener(this);

 return builder.build();

Transaction Data

For the initial implementation, there are only a few pieces of transaction data that should be set.

Recall that the user must first declare and initialize a PosRequestBuilder (referred to as builder

below) before calling the methods below. Please see the “Starting a Transaction” section above for

more information.

Method Description

builder.setAmount(double)

Sets the total tranasaction amount (including

tax, cash back, etc.)

builder.setCustomerPresent(CustomerPresent) Sets the customer presence – most cases will

be CustomerPresent.Present

builder.setProcessAsCredit() Sets the processing type to “Credit”

builder.setProcessAsDebit() Sets the processing type to “Debit”

CommerceDriver™ Quick-Start Guide for Android

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Android 13

builder.setEmployeeId(String)

Sets the Employee ID using the POS for the

transaction

builder.setOrderNumber(String) Sets the Order ID for the transaction

builder.setLaneId(String) Sets the Lane ID for the transaction

builder.setReference(String) Sets the reference for the transaction

builder.setTransactionDateTime(Date)

Sets the transaction date –

Note: in most cases, date can be passed as

newDate()

builder.setTransactionEventListener(TransactionEventListener)

Sets the Event Listener. More information

about Events can be found in the Event

section below.

Events

As shown in the transaction examples, TransactionEventListener works as the observer for both

blocking and non-blocking requests to the POS from the TerminalController.

Below are the methods that are called on the TransactionEventListener:

Method Description Recommended Action

void

onRequestSignatureConfirmation(Co

nfirmSignatureRequest request);

Called if a signature should be

collected and confirmed by the POS

Display a signature dialog and collect

signature.

void

onRequestFinalConfirmation(FinalC

onfirmationRequest request);

Called if a final confirmation must be

made by the POS, as opposed to the

terminal

Display a final confirmation dialog

with the amount.

void

onRequestApplicationSelection(App

Called if application selection must

be made by the POS, as opposed to

the terminal

Display an application selection

dialog.

CommerceDriver™ Quick-Start Guide for Android

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Android 14

licationSelectionRequest

request);

void

onRequestConfirmCardRemoved(Confi

rmCardRemovedRequest request);

Called if the POS should ensure a

card has been removed from the

terminal

None required

void

onWaitingForCard(EnumSet<CardInte

rface> cardInterfaces);

Called when the terminal is ready to

read a card through a supported

interface, (e.g. contacless, contact

chip)

None required

void

onTransactionNotification(Transac

tionNotification notification);

Called when an anonymous event

occurs during a transaction
None required

void onCardRead(CardReadData

cardReadData);

Called when card data is read, (e.g.

maskedPAN, card type)
None required

void

onRequestApDupeOverride(ApDupeOve

rrideRequest request);

Called when a transaction is a

duplicate and the POS can override

to allow the duplicate transaction to

finish processing – this is the default

behavior

None required

void

onRequestCVV(CVVResultHandler

handler);

Called when a transaction requires a

card CVV to be entered by the

cardholder

Display a CVV dialog and return the

collected CVV string via the

onCVVEntered(String cvv)event

method provided by the handler.

void

onTransactionCompleted(Transactio

nResult transactionResult,

BankCardTransactionPro request,

BankCardTransactionResponsePro

response);

Called when a transaction is

completed (approved, declined,

cancelled, error, etc.)

Display a dialog with the result and

receipt options (e.g. email, print, etc.).

CommerceDriver™ Quick-Start Guide for Android

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Android 15

Strong Customer Authentication (SCA) – Contactless PIN

Strong Customer Authentication (SCA) is an overarching mandate that is aimed at increasing and

adding security for potentially suspicious transactions, whether they be Card Present or Card Not

Present transactions. This particular part of the SCA mandate focuses on EMV Contactless PIN,

where additional security will be requested from customers initiating contactless transactions in

the form of asking customers to enter their PIN in order to successfully process certain

transactions. Payment service providers are exempted from the application of SCA, where the

payer initiates a contactless electronic payment transaction, provided that both the following

conditions are met:

 The individual amount of the contactless transaction does not exceed 50 EUR.

 The number of previous contactless transactions initiated since the last application of SCA

does not exceed 150 EUR or 5 consecutive payment transactions.

SCA Contactless PIN workflow is supported for the European market.

Workflow

The following steps outline the process flow for the EMV Contactless PIN flow for SCA.

1. Cardholder taps their card to initiate a contactless transaction.

2. The transaction request is sent to the issuing bank, and they will determine if the

completion of a challenge is needed to complete the transaction, as determined by the

logic set forth under the new SCA mandate.

3. CommerceDriver™ handles the issuing bank’s response by asking the terminal to prompt

for an online PIN or falling back to initiate a contact transaction.

If a PIN was required, CommerceDriver™ handles a resubmit to the issuing bank with the extra

data needed to approve the contactless transaction (e.g. PIN and KSN).

Note: this process is handled entirely within CommerceDriver™ and, from a merchant

perspective, no extra integration changes are needed. Refer to the Platform Integration Guide

for more information about the specifics included in the Resubmit or Challenge Required

response.

CommerceDriver™ Quick-Start Guide for Android

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Android 16

Verify

Verify is a transaction operation added to the CommerceDriver™ which can be used to validate a

card. The Verify operation w ill trigger a MSR swipe transaction on the connected terminal with

empty transaction fields (no amount, merchantID, etc.).

Creating a Verify Request Example
try {

 VerifyRequest builder = PosRequestBuilder.newerifyRequest();

 builder.setTransactionEventListener(myTransactionEventListener);

 commerceDriver.startTerminalTransaction(builder.build());

 // Listen for callbacks!

 } catch (SnapValidationError e) {

 // Commerce Driver didn't like something with the transaction!

 } catch (SnapTerminalError e) {

 // The terminal didn't like something with the transaction!

 } catch (SnapSessionError e) {

 // Your session might be expired! Time to log in again!

}

Tokenization

Tokenization is the process of using a token to run what would typically be a card only transaction.

The EVO Snap* platform generates a unique token associated with a customer’s card that can be

used instead of the customer’s actual card to process a transaction.

How to Run a Tokenized Transaction

In order to run a tokenized transaction, the PaymentAccountDataToken property must be populated

with a valid payment token through the transacion builder `PosRequestBuilder builder =

PosRequestBuilder.newPaymentTokenRequest()`. If the PaymentAccountDataToken is populated,

CommerceDriver™ will automatically run the token and no card will be needed to process the

transaction.

The transaction types that can use payment tokens are listed below:

 Authorize

 Authorize and Capture

 Return Unlinked

Authorize And Capture with Tokenization Example
try {

 PosRequestBuilder builder = PosRequestBuilder.newPaymentTokenRequest()

 builder.setAmount(10.00);

 builder.setPaymentAccountDataToken(DATA_TOKEN);

 builder.setTransactionDateTime(new Date());

 builder.authorizeAndCapture();

 builder.setTransactionEventListener(myTransactionEventListener);

CommerceDriver™ Quick-Start Guide for Android

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Android 17

 commerceDriver.startTerminalTransaction(builder.build());

 // Listen for callbacks!

 } catch (SnapValidationError e) {

 // Commerce Driver didn't like something with the transaction!

 } catch (SnapTerminalError e) {

 // The terminal didn't like something with the transaction!

 } catch (SnapSessionError e) {

 // Your session might be expired! Time to log in again!

}

Keyed Entry Transactions

The ability to process transactions with keyed credit card data was added in v2.34.2 of

CommerceDriver™. Keyed entry transactions can be used with the following transaction types:

 Authorize

 Authorize and Capture

 Return Unlinked

 Verify

Keyed entry transactions are created the same way as outlined in the Transaction Processing

section of this document. After creating a transaction request, set the KeyedEntry field to true to

indicate credit card data will be entered manually in the transaction POS request.

AuthType authType = AuthType.AUTH

PosRequest.Builder builder = new PosRequest.Builder(authType);

Builder.setKeyedEntry(true);

Surcharge Transactions

The 2.34.4 version of CommerceDriver™ saw the addition of transaction processing including a

surcharge. Surcharge is limited to the Authorize and AuthorizeAndCapture transaction types only,

and is supported for Manual Entry, MSR, ICC, and Contactless transaction processing.

To process a transaction including a surcharge, the merchant will set and pass in a new

SurchargePercent field into the POS request builder. SurchargePercent must be a positive decimal

with up to two decimal places, with a range between 0.10 and 4.00. CommerceDriver™ will then

validate the transaction request automatically and add the surcharge amount to the request sent

to the Platform for processing.

When the builder returns the POS request, it returns the validationWarnings field, consisting of a

collection of error enum and description string pairs as listed in the table below:

CommerceDriver™ Quick-Start Guide for Android

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Android 18

Error Enum Description

SURCHARGE_UNSUPPORTED_TRANSACTION__TYPE
“Transaction type <type> is unsupported for

surcharge payments”

SURCHARGE_PINDEBIT_UNSUPPORTED
“Surcharge is not supported for transactions

processed as Pin Debit"

SURCHARGE_CASHBACK_UNSUPPORTED
“Cashback is not supported with surcharge in US

market”

VALIDATIONS_NOT_CHECKED
"Validations have not been checked for this

transaction request"

SURCHARGE_NEGATIVE_VALUE_NOT_ALLOWED “Negative values are not allowed for surcharge"

NO_ISSUES_FOUND "No issues were found with this transaction request"

The surcharge amount will return on the Receipt object as FeeAmount, and will return on the

receipt as a surcharge amount calculated from the percentage set by the merchant and the

transaction subtotal.

Note: if a FEE_NOT_ALLOWED status is returned from Platform, CommerceDriver™ will decline the

transaction and the merchant must restart the transaction through either the Retry method or their own

implementation.

Unsuccessful Calls
When executing “terminal” methods, or calls to login, security related calls, etc., it is possible that

an error can occur.

Common Exception Reasons

Exceptions can typically occur for the following reasons:

 SnapConnectionError is thrown when a network call fails

 SnapSessionError is thrown when a session is expired or invalid and/or a login is required

 SnapApiError thrown when the platform responds with an API Error

o SnapApiError.getErrorResponse() may provide the error response along with an

error code

CommerceDriver™ Quick-Start Guide for Android

Making Payments a Snap* for Developers | CommerceDriver™ Quick-Start Guide for Android 19

Common API Error Codes

If a SnapApiError is thrown, SnapApiError.getErrorResponse() may return an ApiResponse containing

error details. ApiResponse.getErrorId() can return a numeric code indicating the reason for the

API Error.

Below are common API Errors when performing any of the calls listed above:

Error ID Definition Resolution

406 User credentials invalid
Use valid credentials when calling CommerceDriver.login(String,

String)

5001 Password change required
Change password using CommerceDriver.changePassword(String,

String, String)

5002

Account locked – too many

invalid logins
Contact your Solutions Engineer

5003

Account locked –

Administrative Lock
Contact Snap* Customer Support

5004

Account locked – Password is

Expired

Change password using CommerceDriver.changePassword(String,

String, String)

Reference Information
For additional information, please visit the EVO Snap* Support site at

http://www.evosnap.com/support/ or contact your EVO Technical Support representative.

http://www.evosnap.com/support/

