

 Proprietary & Confidential 1

 evopayments.com

3 - D Secure 2.0

Full Feature
 Integration Guide

 Proprietary & Confidential 2

©2018 EVO Payments, Inc.

Table of Contents

Version History .. 3

Overview .. 5

Workflow .. 5

Sign on With Token .. 6

Check for 3-D Secure 2.0 Support (Browser Flow) .. 7

QueryCardRanges without Serial Number .. 7

QueryCardRanges with Serial Number .. 8

QuerySingleCard .. 8

Checking if Method Data is required (MethodCompletionIndicator) 10

When MethodCompletionIndicator = ‘Completed’ ... 10

When MethodCompletionIndicator = ‘NotCompleted’ .. 11

When MethodCompletionIndicator = ‘Unavailable’ .. 11

When MethodCompletionIndicator = ‘NotSet’ .. 11

Protocol Support ... 11

Authentication without 2.0 Support ... 12

Fallback from 2.2 to 2.1 ... 12

Initial Authorize or AuthorizeAndCapture Request .. 13

Browser-Based Frictionless Authentication .. 13

Application-Based Frictionless Authentication ... 21

Challenge Authentication .. 26

Decoupled Authentication .. 28

Data Only Authentication – MasterCard Only .. 31

Resubmit with Challenge Response ... 34

Exemptions ... 37

Authorization ... 43

Follow-On Transactions ... 46

Authorize and Capture or Authorize and Undo .. 46

Card on File for Non-Payment Transactions ... 47

Adding Card on File without Processing Payment.. 47

Repeat Card on File Transactions ... 47

Card on File for Payment Transactions .. 48

Adding a Card on File as Part of a Single Payment ... 48

Repeat Card on File Transactions ... 49

 Proprietary & Confidential 3

Best Practices .. 51

Trigger Values .. 52

TokenResult Triggers .. 52

SCA Challenge Soft Decline Triggers .. 53

Generic soft decline for non-authenticated ecommerce transaction with no exclusions

or exemptions .. 53

Low Value Exemption soft decline ... 53

Low Risk Exemption soft decline .. 53

Recurring Exemption soft decline .. 53

Delegated SCA Exemption soft decline .. 53

Whitelisted Exemption soft decline .. 53

Secure Corporate Exemption soft decline ... 54

Authentication Outage Exemption soft decline .. 54

SCA Exclusion Soft Decline Triggers ... 54

Merchant Initiated Repeat Card On File soft decline ... 54

IsInterRegionalTransaction soft decline .. 54

IsAnonymousPrepaidTransaction soft decline ... 54

MOTO hard decline .. 55

3DS V1 Decommisioning .. 55

Version History
Version Date Description of Changes

V1 25 May 2020 > Initial Version. Browser Flow.

V2 16 June 2020

> .35R2 Updates for Protocol Support, Exemptions

and Out of Scope

> Updated ProtocolVersion Format

V3 17 June 2020

> Updated SIS URIs and ProtocolVersion

> Updated URIs for QueryCardRanges and

QuerySingleCard

> Updated Failed Out of Scope and Exemption

workflow

V4 30 June 2020
> Workflow update for Failed Out of Scope

Transaction

 Proprietary & Confidential 4

V5 01 July 2020
> Added clarification on submitting an Exempted

Transaction Request

V6 08 July 2020

> Clarification on Exemption support on the

Protocols for each of the supported card brands

> Workflow update for Follow-On Transactions

V7 13 July 2020
> Updated RangeAction options for

QueryCardRanges with Serial Number

V8 16 July 2020

> Application-Based Frictionless Flow section added

> Card on File for Non-Payment Transactions

section added

> Changed MerchantName field to RequestorName

> Changed return status code for out of scope

transactions to 65 for MC and Visa transactions

V9 21 August 2020

> Card on File for Payment Transactions sections

added

> Added clarification on retrieving Method Data

> Updated Application-Based Frictionless

Authentication sample Response

V10 6 October 2020

> New Authorization sample Request added with

TokenResult details

> Clarification on Card Brand Exemptions for

version 2.1 added

V11 20 October 2020

> Decoupled Authentication section added

> Data Only Authentication section added

> New requests for QueryCardRanges added

V12 1 December 2020 > Attempts Server Fallback scenario added

 > Fallback from version 2.2 to 2.1 scenario added

V13 14 April 2021
> Anonymous Prepaid scenarios added to Out of

Scope Transactions section

V14 16 September 2022
> AMEX Support, Trigger Values and 3DS V1

deprecation information added.

V15 23 September 2022
> Modified Query Single Card URL for American

Express

 Proprietary & Confidential 5

Overview
3-D Secure is a protocol developed to make online payments more secure through password

authentication and cardholder verification. The new Card Scheme mandates are the next wave of 3-D

Secure that will bring additional eCommerce security to EMV. These updates will be supported for the

eService and TRON frontends.

Workflow
To begin a 3-D Secure 2.0 eCommerce transaction, the Merchant Application follows the existing

workflow for processing payments through the Snap* Platform. Additional steps are present if either

the Issuer or the Merchant requires a Challenge.

1. An initial Sign On call is made to receive credentials to process

2. The Merchant Application will identify if Method Data is required (options are detailed below)

3. Authorize or AuthorizeAndCapture is called to start Authentication and Authorization process

4. If Challenge is required, Merchant Application and Access Control Server complete a Challenge

5. Snap* sends transaction to Acquirer for Authorization

 Proprietary & Confidential 6

Sign on With Token
Merchants will need to implement the SignOnWithToken API request to get a SessionToken for the

Snap* platform. See the example requests and responses below:

SOAP SignOnWithToken Request

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<SOAP-ENV:Body>
<SignOnWithToken xmlns="http://schemas.evosnap.com/CWS/v2.0/ServiceInformation">
<identityToken>PHNhbWw6QXNzZXJ0aW9uIE1ham9yVmVyc2lvbj0…</identityToken>
</SignOnWithToken>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

SOAP SignOnWithToken Response

<s:Envelope
xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"><s:Body><SignOnWithTokenResponse
xmlns="http://schemas.evosnap.com/CWS/v2.0/ServiceInformation"><SignOnWithTokenResult>P
HNhbW w6QXNz…<
/SignOnWithTokenResult>
</SignOnWithTokenResponse>
</s:Body>
</s:Envelope>

REST SignOnWithToken Request

RequestUri https://api.cipcert.goevo.com/2.1.38/REST/SIS.svc/token

Method GET

Set Username as the Identity Token on the HTTP Authentication header. The Request body is empty.

REST SignOnWithToken Response
A long SessionToken is returned on the response. This will be required on subsequent calls.

 Proprietary & Confidential 7

Check for 3-D Secure 2.0 Support (Browser Flow)
The 3-D Secure protocol requires the Card Range of a transaction be checked for 3-D Secure 2.0

support prior to processing a transaction. Card Range Data contains which versions of 3-D Secure

the card(s) support, as well as indicates if Method Data is required for the transaction. Method Data

is additional information about a Cardholder’s environment that is obtained by the Access Control

Server via the Merchant Application. Snap* offers two options to have the Card Range Data results

returned to the Merchant.

First, Merchants can manage their own cache of Card Range Data and receive all the updates since

the last query using the QueryCardRanges operation. If the Merchant is using their own cache, they

must query their own cache for 3-D Secure support before sending the initial Authentication

request. This approach is optimal as it reduces the individual transaction time due to not having to

query Snap* for this information on each transaction.

To initiate a Merchant cache, Merchants should query without a unique serial number. This will return

all known Card Ranges as well as a unique serial number. Future queries should use the previously

returned serial number to receive only Card Range updates since the last query.

** QueryCardRanges should only be called once a day. If you receive an error, the next day

QueryCardRanges should be called with an empty Serial Number. When calling QueryCardRanges

without serial number, all current card ranges will be replaced with the new full range.

QueryCardRanges without Serial Number

RequestUri
https://api.cipcert.goevo.com/2.1.38/REST/SIS.svc/3ds/querycard/ranges/{{serviceId}}

?cardType={{cardtype}}

Method GET

Authentication Session token set as Username on Authentication header

Response

{ "CardRanges":[{
 "RangeAction": "A",
 "RangeStart": "4000000000000000",
 "RangeEnd": "4100000000000000",
 "AcsStartProtocolVersion": "2.1.0",
 "AcsEndProtocolVersion": "2.2.0",
 "ThreeDsMethodUrl": "https://some.ds.url/" }],
 "SerialNumber": "1"
}

 Proprietary & Confidential 8

QueryCardRanges with Serial Number

RequestUri
https://api.cipcert.goevo.com/2.1.38/REST/SIS.svc/3ds/querycard/ranges/{{serviceId}}

?cardType={{cardtype}}

Method GET

Authentication Session token set as Username on Authentication header

Response

{ "CardRanges":[{
 "RangeAction": "A",
 "RangeStart": "4000000000000000",
 "RangeEnd": "4100000000000000",
 "AcsStartProtocolVersion": "2.0",
 "AcsEndProtocolVersion": "2.1",
 "ThreeDsMethodUrl": "https://some.ds.url/" }],
 "SerialNumber": "2"
}

The response will contain the RangeAction for the associated Card Range. RangeAction has three

options: A “Add”, D “Delete”,or M “Modify”. “Modify” excludes any modification of the RangeStart or

RangeEnd.

On initial release, the CardType values supported will be ‘MasterCard’ and ‘Visa’. It is recommended to

call QueryCardRanges daily for the most up to date Card Range Data.

Optionally, Merchant Applications can query the Snap* Card Range Cache for the specific card being

used in an individual transaction by using the QuerySingleCard operation and the card number. The

response will contain which versions of 3-D Secure 2.0 the card supports, as well as if Method Data is

required for the

transaction. This call will need to be made before any 3D Secure attempt with an Authorize or

AuthorizeAndCapture transaction and will increase overall transaction time.

QuerySingleCard

RequestUri
https://api.cipcert.goevo.com/2.1.38/Rest/SIS.svc/3ds/querycard/single/{{merchantProfi

leId}}/{{serviceId}}?cardType={{cardType}}&cardNumber={{cardNumber}}

Method GET

Response with ThreeDsMethodUrl

{
 "CardRange": {
 "AcsStartProtocolVersion": "2.0",
 "AcsEndProtocolVersion": "2.1",

 Proprietary & Confidential 9

 "ThreeDsMethodUrl": "https://some.ds.url/"
 },
 "MethodData": {
 "ThreeDsMethodData": "somestring",
 "ServerTransactionId": "00000000-0000-0000-0000-000000000000"
}
}

Example RequestURI for each card brand:
Visa
https://api.cipcert.goevo.com/2.1.38/REST/ThreeDSecure.svc/3ds/querycard/single/Visa/{cardNumber

}

MasterCard
https://api.cipcert.goevo.com/2.1.38/REST/ThreeDSecure.svc/3ds/querycard/single/MasterCard/{card

Number}

American Express
https://api.cipcert.goevo.com/2.1.38/REST/ThreeDSecure.svc/3ds/querycard/single/AmericanExpress
/{cardNumber}

Pre-loaded American_Express test cards:

 371449635398456
 371449111020228 (SafeKey Card Enrolled: Successful Authentication)
 371570799762003
 371449635398431 (Manual)

Response without ThreeDsMethodUrl

{
 "CardRange": {
 "AcsStartProtocolVersion": "2.1.0",
 "AcsEndProtocolVersion": "2.2.0",
 "AcsInfoInd": "01,02,03,04",
 "ThreeDsMethodUrl": ""
 },
 "MethodData": {
 "ThreeDsMethodData": null,
 "ServerTransactionId": null
 }
}

 Proprietary & Confidential 1

If ThreeDsMethodUrl is populated in the response, Method Data is required. To exchange Method

Data, post the ThreeDsMethodData to the ThreeDsMethodUrl.

Request

 <form name="frm" method="POST" target="iframe" action="https://some.ds.url/">
 <input type="hidden" name="threeDSMethodData"
value="eyJ0aHJlZU…pb25VUkwiOiJodHRwczovL2Zha2VzaXRlLmJsYWgifQ==">
</form>

Response

 <form name="frm" method="POST" action="http://themerchantnotificationURL.url">
 <input type="hidden" name="threeDSMethodData"
value="eyJ0aHJlZU…g5YWE3LWFhNDItMjY2My03OTFiLTJhYzA1YTU0MmM0YSJ9">
</form>

For more information on retrieving Method Data, please refer to card brand documents on ACS

functionality.

At the time of a purchase, Snap* checks whether the card is supported for 3-D Secure 2.0 and if

Method Data is required for the transaction. Merchants may query for Card Range Data outside of

normal transaction processing to keep their Card Range Cache up to date or they may query Snap*

on each transaction to check for 3-D Secure 2.0 support.

Checking if Method Data is required

(MethodCompletionIndicator)
The Card Range support query will also indicate if Method Data is required for that card. Method Data

is additional information about a Cardholder’s environment that is obtained by the ACS via the

Merchant Application environment. The MethodCompletionIndicator field is set on the Merchant

Application’s

Authorize or AuthorizeAndCapture request to Platform. This field indicates if the ACS has collected the

Method Data (if applicable) from the Merchant Application. The possible values and their meanings

are detailed in the sections below.

When MethodCompletionIndicator = ‘Completed’
A MethodCompletionIndicator value of ‘Completed’ indicates that the ACS successfully collected the

applicable Method Data. If the MethodCompletionIndicator value is set to ‘Completed’ on the

Merchant Application’s Authorize or AuthorizeAndCapture request, a ServerTransactionID is required

for Authentication. If a Merchant Application does not set it, Snap* will assign one for them.

 Proprietary & Confidential 1

When MethodCompletionIndicator = ‘NotCompleted’
This response indicates that the response from the ACS to the Merchant Application was not received

within 10 seconds.

When MethodCompletionIndicator = ‘Unavailable’
A MethodCompletionIndicator value of ‘Unavailable’ indicates that there is no Method Data for the

ACS to collect. If the MethodCompletionIndicator value is set to ‘Unavailable’ on the Merchant

Application’s Authorize or AuthorizeAndCapture request, Platform will do a check against its own

Card Range Cache to determine that Method Data is in fact not supported. If there is no

ThreeDsMethodURL for the card, no fault or corresponding error message will be thrown. However, if

a ThreeDsMethodURL is defined for the card,

‘Unavailable’ is not the correct MethodCompletionIndicator value, and in this case, an error is thrown

stating “Method Data is supported for this card. Update the MethodCompletionIndicator and try

again.”, thus ending the transaction workflow.

When MethodCompletionIndicator = ‘NotSet’
A MethodCompletionIndicator value of ‘NotSet’ may indicate that the card supports 3-D Secure 1.0

rather than 2.0. If the MethodCompletionIndicator value is set to ‘NotSet’ on the Merchant

Application’s Authorize or AuthorizeAndCapture request, Platform will do a check against its own

Card Range Cache to concretely determine if 3-D Secure 2.0 is supported.

If the card exists within Platform’s stored 3D Secure 2.0 Card Ranges, this indicates that the card is in

fact 3-

D Secure 2.0-enrolled, and ‘NotSet’ is not the correct MethodCompletionIndicator value. Correct values

for 3-D Secure 2.0-enrolled cards include ‘Completed’, ‘NotCompleted’ and ‘Unavailable’. In this case,

an error is thrown, citing “3DS 2.0 is supported for this card. Update the MethodCompletionIndicator

and try again.”

Protocol Support
Due to the many roles in the Authentication workflow, Snap* has added logic to submit the highest

mutually supported protocol in an Authentication request. This will guarantee the highest chance of a

successful Authentication.

The Merchant Application will only need to have knowledge of the highest version they support and

submit that value in the ProtocolVersion field on the request. The current release supports the

following protocols:

2.1 and 2.2. The Snap* Platform will execute protocol management based on this field, as well as

Issuer and Card Range support. For informational purposes, the following flow defines protocol

support.

 Proprietary & Confidential 1

When a Merchant Application upgrades to the 2.0 workflow through the Snap* Platform, they will

submit ProtocolVersion as ‘v2_X_0’, X being defined as the highest minor version the Merchant

Application would like to support.

Authentication without 2.0 Support
If the Issuer does not yet support 2.0, there are still a few options for Authentication.

1. If the Merchant is registered for Data Insights with MasterCard (indicated by

SupportsDataOnly set to ‘true’), Snap* will send the transaction for 2.0 Data Only

Authentication to the DS. The Data Insights program is available to Merchants who are not

required to support SCA, but would like the DS to do a risk analysis on their transaction and

submit that with the Authorization. This transaction type does not reach the ACS. A successful

Data Only Authentication will be returned as TransactionStatus ‘UnableToAuthenticate’, and

ProcessedAsDataOnly will be ‘true’.

2. If the Merchant Application does not support Data Insights, but the DS supports the Attempts

Server, Snap* will send the transaction for 2.0 Authentication to the DS Attempts Server. The

Attempts Server is a product provided by the card brands to act as an Authenticator on behalf

of the Issuer until the Issuer supports 2.0. The TransactionStatus in this workflow will be

returned as ‘AttemptsProcessingPerformed’.

3. If the Merchant Application is not registered for MasterCard’s Data Insights, and the DS does

not support the Attempts Server, the transaction will return with ErrorCode ‘9000’ and

ErrorDescription “Unable to process 3-D Secure. Issuer does not support compatible

protocol."

Fallback from 2.2 to 2.1
If the Merchant Application tries to process as 2.2 and only supports version 2.1, the transaction will

be processed using the 2.1 protocols. Any fields that included on the Request but are not part of the

2.1 protocol will be dropped.

The following fields are not supported in version 2.1 and will be dropped from the Request:

• BrowserJavaScriptEnabled

• EMVPaymentTokenSource

• WhiteListStatus

• WhiteListSource

• DecoupledMaxTimeout

• DecoupledRequestIndicator

The following fields have accepted values that exist for 2.2 but not 2.1:

 Proprietary & Confidential 1

Field Name Values

RequestorChallengeIndicator

05 = NoChallengeRequestedRiskAnalysis

06 = NoChallengeRequestedDataShare

07 = NoChallengeRequestedStrongAuth

08 = NoChallengeRequestedWhitelist

09 = ChallengeRequestedWhitelist

RequestorAuthMethod
07 = FIDOAssurance

08 = SRCAssurance

Assuming the transaction is successfully authenticated using the 3DS 2.1 protocol, the

ProtocolVersion on the Response will be updated to indicate the transaction was processed as 2.1

(rather than 2.2 as indicated on the original Request).

Note that Protocol Support is supported the same way for both Browser and Application-Based workflows.

Initial Authorize or AuthorizeAndCapture Request
The initial Authorize or AuthorizeAndCapture request is where the process of submitting a 3-D Secure

transaction actually begins. This initial request will contain all the new required and conditional 3-D

Secure 2.0 fields. There are four possible options on the response:

1. If the response returns as SuccessfullyAuthenticated, the transaction is automatically sent for

Authorization.

2. If the response returns as AttemptedProcessingPerfomed, the transaction is automatically

sent for Authorization.

3. If the response returns as NotAuthenticated, AuthenticationRejected or UnableToAuthenticate,

a Decline response is returned to the Merchant Application, and they can choose to reattempt

the transaction as non-3-D Secure.

4. The final response option is Challenge Required.

Browser-Based Frictionless Authentication

Frictionless Authentication without Method Data (Authorized Workflow)
Method Data is additional information about the Cardholder’s browser obtained directly by ACS. In

this workflow, the ACS does not support/require Method Data for that card (i.e. no

ThreeDsMethodUrl on CardRange), and the additional 3-D Secure data is enough for the ACS to

authenticate the transaction without further interaction with the cardholder.

In this scenario:

 Proprietary & Confidential 1

> Merchant Application either calls QuerySingleCard or queries their local cache to determine if

Method Data is supported for the Card Range. Query results indicate ThreeDsMethodUrl is not

required for the Card Range by returning null.

> Merchant Application sends in Authorize or AuthorizeAndCapture call with Is3DSecure set to 'true',

MethodCompletionIndicator set to ‘Unavailable’, and other required 3-D Secure 2.0 fields.

> Authorize or AuthorizeAndCapture response will contain the Authorization approval details.

RequestUri https://api.cipcert.goevo.com/2.1.38/REST/TPS.svc/{serviced}

Method POST

Authentication Session token set as Username on Authentication header

 Proprietary & Confidential 1

Request

 {
 "$type": "AuthorizeAndCaptureTransaction,
http://schemas.evosnap.com/CWS/v2.0/Transactions/Rest",
"transaction":
 {
 "$type":
"BankcardTransactionPro,http://schemas.evosnap.com/CWS/v2.0/Transactions/Bankcard/Pro",
 "TenderData": {
 "$type":
"BankcardTenderDataPro,http://schemas.evosnap.com/CWS/v2.0/Transactions/Bankcard/Pro",
 "CardData": {
 "CardType":"Visa",
 "CardholderName": "Johnny Cardholder2",
 "PAN": "4024007108478834",
 "Expire":"1225",
 "ChipConditionCode":"9"
},
 "CardholderIdType":"NoEAuth"
 },
 "TransactionData": {
"$type":
"BankcardTransactionDataPro,http://schemas.evosnap.com/CWS/v2.0/Transactions/Bankcard/Pro",
 "CashBackAmount":"5.5",
 "EntryMode":"Keyed",
 "GoodsType":"DigitalGoods",
 "InternetTransactionData": {

 "IpAddress": "127.0.0.1",
 "SessionId": "12345",
 "BrowserAcceptHeader":"1",
 "BrowserJavaEnabled":"True",
 "BrowserJavaScriptEnabled":"True",
 "BrowserLanguage": "en-US",
 "BrowserScreenColorDepth": "16",
 "BrowserScreenHeight": "400",
 "BrowserScreenWidth": "300",
 "BrowserTimeZone":"+000",
 "BrowserUserAgent":"2"

 },
 "InvoiceNumber": "12345",
 "OrderNumber": "333",
 "SignatureCaptured":false,
 "TipAmount":1.24,
 "Amount":1.00,
 "CurrencyCode":"USD",
 "TransactionDateTime":"2014-10-06T20:49:14Z",
 "Reference": "referenceTest",
 "Is3DSecure":true,
 "CardholderAuthenticationEntity":"None",
 "CardPresence":false,
 "IsQuickPaymentService":false,
 "ThreeDSData": {
 "AuthenticationIndicator":"Payment",
 "ChallengeWindowSize":"0",
 "MethodCompletionIndicator":"Unavailable",
 "RequestorAuthMethod":"0",
 "RequestorChallengeIndicator":"0",

 Proprietary & Confidential 1

 "ServerTransactionId":"e44b34d5-6edc-4f21-a661-434393e4c7e1",
"TransactionType":"0",

 "WhiteListStatus": 1,
 "PaymentTokenIndicator":"0",
 "SecureCorporatePayment":"0",
 "DecoupledMaxTimeout":"0",

 Proprietary & Confidential 1

 "DecoupledRequestIndicator":"0",
 "ProtocolVersion":"v2_2_0",
 "SupportsProtocolVersion1":false,
 "RequestorAuthTimestamp": "0001-01-01T00:00:00"
 },
 "ThreeRIIndicator":"NotSet",
 "TransactionStatusIndicator":"NotSet"
 },
 "IsOffline":false
 },
 "ApplicationProfileId":"781738",
 "MerchantProfileId": "CWS TestClient .30 New Profile"
 }

Response
 "TerminalAccessToken": null,
 "PrepaidCard": "NotSet",
 "Expire": "1225",
 "ErrorType": null,
 "AuthorizationServerUrl": "",
 "PaymentAuthorizationRequest": "",
 "ProcessedAs3D": false,
 "EMVDataResponse": null,
 "Level3Added": "NotSet",
 "LastPANDigits": "8834",
 "BatchAmount": 0.00,
 "MessageAuthenticationCode": "",
 "TokenInformation": null,
 "ForcePostCode": "",
 "MerchantId": "123456789012",
 "TerminalId": "001",
 "BankResponseCode": "",
 "InitialEncryptionKeys": null,
 "IsPartialApproval": false,
 "EBTAvailableBalance": {
 "CashAvailableBalance": 0.00,
 "SNAPAvailableBalance": 0.00 },
 "IndustryType": "Ecommerce",
 "ThreeDSecureInformation": null,
 "ThreeDSInformation": {
 "TransactionStatus": "SuccessfullyAuthenticated",
 "AuthenticationECI": "05",
 "DSTransactionId": "20c03200-339f-4ae1-b7e8-22b6eac1fb0c",
 "IsChallengeMandated": false,
 "ChallengeRequest": null,
 "ChallengeCancellationIndicator": null,
 "TransactionStatusReason": "NotSet",
 "AuthenticationValue": "QmFzZTY0RW5jb2RlZDIwYnl0ZXM=",
 "ACSPublicKey": null,
 "ACSOperatorId": null,
 "ACSReferenceNumber": null,
 "ACSRenderingInterface": "NotSet",
 "ACSRenderingUITemplate": "NotSet",
 "ACSSignedContent": null,
 "ACSTransactionId": "902157de-f4da-46dd-a242-67e2a6852bc3",
 "AuthenticationType": "Dynamic",
 "CardholderInformationText": null,

 Proprietary & Confidential 1

 "DSReferenceNumber": null,
 "ErrorCode": null,
 "ErrorDetail": null,
 "ErrorDescription": null,
 "AcsUrl": null,
 "MerchantId": null,
 "MessageCategory": "Payment",
 "ProtocolVersion": "v2_1_0",
 "ServerTransactionId": “QmFzZTY0RW5jb2RlZDIwYnl0ZXM=”,
 "WhiteListStatus": "NotSet"
 },
 "SystemTraceAuditNumber": "3URHVZPIU87LOKA",
 "MACTransmissionNumber": ""

Frictionless Authentication with Method Data
In this workflow, the ACS supports Method Data (i.e. ThreeDsMethodUrl is defined on the Card

Range). In this scenario:

> Merchant Application either calls QuerySingleCard or queries their local cache to determine if

Method Data is supported for the CardRange.

o If the Merchant Application is using the Snap* Card Range Cache, Snap* Platform will

query the platform cache and return the single Card Range along with the base64-

encoded ThreeDsMethodData to be posted to the ACS URL.

o If the Merchant Application has a local cache, the ThreeDsMethodData can be created

by generating a unique ServerTransactionId and base64 encoding the

ServerTransactionId and Merchant-defined NotificationURL. Please note this

ServerTransactionId should be included on the Authorize or AuthorizeAndCapture

request.

The Merchant Application will then interact with the ACS to allow browser information to be pulled

and retrieve Method Data. To do this, the Merchant Application should make a POST to the URL

returned in the QuerySingleCard response if they are using the Snap* cache.

The Merchant Application Authorize request will be identical to the “without Method Data” request,

with the exception of setting the MethodCompletionIndicator to ‘Completed’. If more information is

needed about how Method Data is exchanged through this process, consult the appropriate card

schemes or EMVCo specification here.

If the transaction was successfully 3-D Secure-authenticated, the transaction will continue

on to Authorization. After Authorization is complete, the response will contain the

following additional Authentication information:

Parameter Data Type Description

ACSTransactionID String
Identifier assigned by the Access Control Server to

identify a single transaction.

AuthenticationECI String

Payment System-specific value provided by the Access

Control Server or Directory Server to indicate the results

of the attempt to authenticate the Cardholder

 Proprietary & Confidential 1

AuthenticationType Enum

Indicates the type of authentication method the Issuer

will use to challenge the Cardholder:
> NotSet

> Static

> OOB

> Decoupled

> Other

AuthenticationValue String

Payment System-specific value provided by the Access

Control Server or Directory Server using an algorithm

defined by Payment System. It is used to provide proof

of authentication.

ChallengeCancellation

Indicator
Enum

Indicator informing the Access Control Server and the

Directory Server that the authentication has been

 canceled. This will only be returned on a

QueryAuthenticationResults Response:
> NotSet

> CardholderCancel

> RequestorCancel

> TransactionAbandoned

> TransactionTimeOut

> TransactionTimeoutCReqNotReceived

> TransactionError

> Unknown

DSTransactionID String
Identifier assigned by the Directory Server to identify a

single transaction.

MessageCategory Enum

Identifies the category of the message for a specific use

case:
> NotSet

> NonPayment

> Payment

ProtocolVersion Enum

The Protocol Version Number indicating which protocol

was used for Authentication:

> NotSet

> v2_1_0

> v2_2_0

ServerTransactionId String

Universally unique transaction identifier assigned by

Snap* or the Merchant Application to identify a single

transaction. Snap* will define this value if merchant is

using their own Card Range Cache.

 Proprietary & Confidential 2

TransactionStatus Enum

This value defines the authentication status for validation

purposes. It is required for processing:

> SuccessfullyAuthenticated

> NotAuthenticated

> UnableToAuthenticate

> AttemptsProcessingPerformed

> ChallengeRequired

> DecoupledAuthenticationRequired

> AuthenticationRejected InformationalOnly

WhiteListStatus Enum

Enables the communication of trusted

beneficiary/whitelist status between the Access Control

Server, the Directory Server and the 3-D Secure

Requestor:

> NotSet

> IsWhiteListed

> IsNotWhiteListed NotEligible

 > PendingConfirmation

> CardholderRejected

> StatusUnknown

 Proprietary & Confidential 2

If the transaction was not successfully authenticated, the response will include ThreeDSInformation

indicating why the Authentication failed and was not sent for Authorization:

Parameter Data Type Description

TransactionStatusReason Enum

Provides information on why the transaction status

field has the specified value.

> NotSet

> CardAuthenticationFailed

> UnknownDevice

> UnsupportedDevice

> ExceedsAuthenticationFrequencyLimit

> ExpiredCard

> InvalidCardNumber

> InvalidTransaction

> NoCardRecord

> SecurityFailure

> StolenCard

> SuspectedFraud

> TransactionNotPermitted

> CardholderNotEnrolled

> TransactionTimeout

> LowConfidence

> MediumConfidence

> HighConfidence

> VeryHighConfidence

> ExceedsMaximumChallenges

> NonPaymentTransactionNotSupported

> ThreeRITransactionNotSupported

> ACSTechnicalIssue

> DecoupledRequiredButNotRequested

> DecoupledMaxExpiryExceeded

> DecoupledTimeout

> CardholderRefusedAuthentication

> Other

Application-Based Frictionless Authentication
There is no Method Data within the Application-Based workflow; therefore, the Merchant does not

need to consider the CardRangeCache. In this scenario, the Merchant Application interfaces with 3DS

 Proprietary & Confidential 2

SDK to retrieve and encrypt device information and sends in an Authorize or AuthorizeAndCapture

request with SDKInfo fields and other required 3-D Secure 2.0 fields set – the Application specific fields

can be found on the Snap* Documentation Portal.

The Authorize or AuthorizeAndCapture response will contain the Authorization approval details,

including AuthenticationValue and AuthenticationECI fields as proof of authentication and

SDKResponseInfo. If a Challenge is required in the Authorize or AuthorizeAndCapture response, the

same Challenge workflow is followed as the Browser-Based Authentication and is detailed below.

 Proprietary & Confidential 2

Request
{
"$type": "BankcardTransactionPro,
http://schemas.evosnap.com/CWS/v2.0/Transactions/Bankcard/Pro",
 "TenderData": {
"$type": "BankcardTenderDataPro,
http://schemas.evosnap.com/CWS/v2.0/Transactions/Bankcard/Pro",
 "CardData": {
 "CardType": “Visa”,
 "CardholderName": "Johnny Cardholder",
 "PAN": "4539797605519795",
 "Expire": "1225",
 "ChipConditionCode": "9",
 "FallbackReason": 0,
 "StrongCardholderAuthSupport": 0
 },
 "CardSecurityData": {
 "CVDataProvided": 0
 },
 "CardholderIdType": 1,
 "TenderType": 0,
 "DeviceTypeIndicator": 0
 },
 "TransactionData": {
 "$type": "BankcardTransactionDataPro,
 http://schemas.evosnap.com/CWS/v2.0/Transactions/Bankcard/Pro",
 "AccountType": 0,
 "CashBackAmount": 5.5,
 "CustomerPresent": 0,
 "EmployeeId": "1234",
 "EntryMode": 1,
 "GoodsType": 1,
 "InternetTransactionData": null,
 "InvoiceNumber": "12345",
 "OrderNumber": "333",
 "SignatureCaptured": false,
 "TipAmount": 1.24,
"Amount": 100.00,
 "CurrencyCode": 4,
 "TransactionDateTime": "2014-10-06T20:49:14Z",
 "Reference": "referenceTest",
 "IsPartialShipment": false,
 "FeeAmount": 0.00,
 "PartialApprovalCapable": 0,
 "ScoreThreshold": "scoreThresholdtest",
 "IsQuasiCash": false,
 "TransactionCode": 0,
 "Is3DSecure": true,
 "CardholderAuthenticationEntity": 5,
 "CardPresence": false,
 "IsQuickPaymentService": false,

 Proprietary & Confidential 2

 "EBTType": 0,
 "AmountTypeIndicator": 0,
"ThreeDSData": {
 "AuthenticationIndicator": 1,
 "ChallengeWindowSize": 0,
 "MethodCompletionIndicator": 2,
 "RequestorAuthMethod": 0,
 "RequestorChallengeIndicator": 0,
 "SDKInfo": {
 "AppId": "a048702f-6bcc-402a-8c22-1c2a362b02c5",
 "DeviceRenderOptions": {
 "Interface": "Native",
 "UITypes": ["SingleSelect"]
 },
 "EncryptedData": "SomeEncryptedData",
 "MaxTimeout": 5,
 "PublicKey":
"eyJrdHkiOiJFQyIsImNydiI6IlAtMjU2IiwieCI6IlRFV0tSenk3S0t3cXZfWVZHbjV5bnBZc28xcVgxRjJnREVWbFB
kSEJzUzgiLCJ5IjoiSGVQQWxYM2laYWNTRTN6aGQ0ZU5WUnVUZ19hSDZNdG9nM0pTU21aV0tBUSJ9",
 "ReferenceNumber": "123",
 "TransactionId": "1d33eb63-88d4-40fa-8e8c-a9b0265cde95"
 },
 "ServerTransactionId": "84ae9a5a-f4e6-4fbd-8df1-20d208df927a",
 "TransactionType": 0,
 "PaymentTokenIndicator": 0,
 "AccountInfo": null,
 "AccountId": null,
 "MerchantRiskInfo": null,
 "DecoupledMaxTimeout": 0,
 "DecoupledRequestIndicator": 0,
 "ProtocolVersion": 3,
 "SupportsProtocolVersion1": true,
 "RequestorAuthData": null,
 "RequestorAuthTimestamp": "0001-01-01T00:00:00",
 "ThreeRIIndicator": 0,
 "IsInterRegionalTransaction": false,
 "IsAnonymousPrepaidTransaction": false,
 "ExemptionInfo": null,
}
 "TransactionStatusIndicator": 0
 },
 "ReportingData": {
 "Comment": "This is a comment",
 "Description": "12345678",
 "Reference": "12345678"
 },
 "IsOffline": false
}

 Proprietary & Confidential 2

Response

{
 "AdviceResponse": "NotSet",
 "Amount": 1.00,
 "Status": "Successful",
 "CommercialCardResponse": "NotSet",
 "CardType": "Visa",
 "StatusCode": "1",
 "ReturnedACI": "NotSet",
 "FeeAmount": 0.00,
 "StatusMessage": "APPROVED",
 "ApprovalCode": "R7SJKB",
 "TransactionId": "386700F258A04B78AE7415DA5F07C0AE",
 "AVSResult": null,
 "OriginatorTransactionId": "3014",
 "BatchId": "2014",
 "ServiceTransactionId": "36467853",
 "CVResult": "NotSet",
 "ServiceTransactionDateTime": {
 "Date": "2020-09-14",
 "Time": "21:55:35.448",
 "TimeZone": "-06:00"
 },
 "CardLevel": ""
 "DowngradeCode": "",
 "CaptureState": "ReadyForCapture",
 "MaskedPAN": "402400XXXXXX8834",
 "TransactionState": "Authorized",
 "PaymentAccountDataToken": "",
 "IsAcknowledged": false,
 "RetrievalReferenceNumber": "088960526209",
 "Reference": "3014",
 "Resubmit": "NotSet",
 "TransmissionNumber": "386700F258A04B78AE7415DA5F07C0AE",
 "SettlementDate": "0001-01-01T00:00:00",
 "TransactionCode": "",
 "FinalBalance": null,
 "HostMessageId": "",
 "OrderId": "2914",
 "Geolocation": null,
 "CashBackAmount": 0.00,
 "TerminalAccessToken": null,
 "PrepaidCard": "NotSet",
 "Expire": "0230",
 "ErrorType": null,
 "AuthorizationServerUrl": "",
 "PaymentAuthorizationRequest": "",
 "ProcessedAs3D": false,
 "EMVDataResponse": null,
 "Level3Added": "NotSet",

 Proprietary & Confidential 2

 "LastPANDigits": "8834",
 "BatchAmount": 0.00,
 "MessageAuthenticationCode": "",
 "TokenInformation": null,
 "ForcePostCode": "",
 "MerchantId": "123456789012",
 "TerminalId": "001",
 "BankResponseCode": "",
 "InitialEncryptionKeys": null,
 "IsPartialApproval": false,
 "IndustryType": "Ecommerce",
 "ThreeDSecureInformation": null,
 "ThreeDSInformation": {
 "TransactionStatus": "SuccessfullyAuthenticated",
 "AuthenticationECI": "05",
 "DSTransactionId": "36949325-12d1-4c14-a222-3f4fb422d454",
 "IsChallengeMandated": false,
 "ChallengeRequest": null,
 "ChallengeCancellationIndicator": null,
 "TransactionStatusReason": "NotSet",
 "AuthenticationValue": "QmFzZTY0RW5jb2RlZDIwYnl0ZXM=",
 "ACSTransactionId": "f948ba27-33aa-471a-aa5e-3501d939932e",
 "AuthenticationType": "Dynamic",
 "CardholderInformationText": null,
 "DSReferenceNumber": null,

Challenge Authentication
Alternatively, the response can indicate a Challenge is required. This workflow is an extension to Frictionless

Authentication (with or without Method Data). When the Challenge workflow is invoked, the initial Authorize

call returns a Decline with TransactionStatus ‘ChallengeRequired’ on the response.

The Issuer or the Merchant could request a Challenge for reasons such as the transaction amount is above

defined limit or the browser information is not recognized. Examples of Challenges are SMS or email

verification.

Decline Response to Authorize Call

"AdviceResponse": "NotSet",
 "Amount": 100.00,
 "Status": "Failure",
 "CommercialCardResponse": "NotSet",
 "CardType": "Visa",
 "StatusCode": "3DSChallenge",
 "ReturnedACI": "NotSet",
 "FeeAmount": 0.00,
 "StatusMessage": "3DS challenge required. Resubmit transaction after challenge is
complete.",
 "ApprovalCode": "",
 "TransactionId": "A0E2B5A75B19449F8DADB17927345773",
 "AVSResult": null,
 "OriginatorTransactionId": "23133",
 "BatchId": "",
"ServiceTransactionId": "",

 Proprietary & Confidential 2

 "CVResult": "NotSet",
 "ServiceTransactionDateTime": {
 "Date": null,
 "Time": null,
 "TimeZone": null
 },
 "CardLevel": "",
 "Addendum": null,
 "DowngradeCode": "",
 "CaptureState": "CaptureDeclined",

 "MaskedPAN": "402400XXXXXX8834",
 "TransactionState": "CaptureDeclined",
 "PaymentAccountDataToken": "a0e2b5a7-5b19-449f-8dad-b17927345773d7217bf3-4f03-45d0-8ce8-
d6dafa4014f7",
 "IsAcknowledged": false,
 "RetrievalReferenceNumber": "",
 "Reference": "e44b34d5-6edc-4f21-a661-434393e4c7e1",
 "Resubmit": "NotSet",
 "TransmissionNumber": null,
 "SettlementDate": "0001-01-01T00:00:00",
 "TransactionCode": "",
 "FinalBalance": null,
 "HostMessageId": "", "OrderId": "22133",
 "Geolocation": null,
 "CashBackAmount": 0.00,
 "TerminalAccessToken": null,
 "PrepaidCard": "NotSet",
 "Expire": "1225",
 "ErrorType": "3DSChallenge",
 "AuthorizationServerUrl": "",
 "PaymentAuthorizationRequest": "",
 "ProcessedAs3D": false,
 "EMVDataResponse": null,
 "Level3Added": "NotSet",
 "LastPANDigits": "8834",
 "BatchAmount": 0.00,
 "MessageAuthenticationCode": "",
 "TokenInformation": null,
 "ForcePostCode": "",
 "MerchantId": "123456789012",
 "TerminalId": "001",
 "BankResponseCode": "",
 "InitialEncryptionKeys": null,
 "IsPartialApproval": false,
 "EBTAvailableBalance": {
 "CashAvailableBalance": 0.00,
 "SNAPAvailableBalance": 0.00
 },
 "IndustryType": "Ecommerce",
 "ThreeDSecureInformation": null,
 "ThreeDSInformation": {
 "TransactionStatus": "ChallengeRequired",
 "AuthenticationECI": null,
 "DSTransactionId": null,
 "IsChallengeMandated": true, "ChallengeRequest":
"eyJtZXNzYWdlVHlwZSI6IkNSZXEiLCJtZXNzYWdlVmVyc2lvbiI6IjIuMS4wIiwidGhyZWVEU1NlcnZlclRyYW5zSUQ
iOiJlNDRiM
zRkNS02ZWRjLTRmMjEtYTY2MS00MzQzOTNlNGM3ZTEiLCJhY3NUcmFuc0lEIjoiNWRhMDUwMWItOWZhZC00MjQzLWEwM
zAtMjA3YTU

 Proprietary & Confidential 2

1NzU1N2VlIiwiY2hhbGxlbmdlV2luZG93U2l6ZSI6IjAxIn0",
 "ChallengeCancellationIndicator": null,
 "TransactionStatusReason": "NotSet",
 "AuthenticationValue": null,
 "ACSPublicKey": null,
 "ACSOperatorId": null,
 "ACSReferenceNumber": null,
 "ACSRenderingInterface": "NotSet",
 "ACSRenderingUITemplate": "NotSet",
 "ACSSignedContent": null,
 "ACSTransactionId": null,
 "AuthenticationType": "NotSet",
 "CardholderInformationText": null,
 "DSReferenceNumber": null,
 "ErrorCode": null,
 "ErrorDetail": null,
 "ErrorDescription": null,
 "AcsUrl": "https://mockacsds.cipdev2.local/visa",
 "MerchantId": null,
 "MessageCategory": "NotSet",

 "ProtocolVersion": "NotSet",
 "ServerTransactionId": null,
 "WhiteListStatus": "NotSet"
 },
 "SystemTraceAuditNumber": "",
 "MACTransmissionNumber": ""
}

Decoupled Authentication
Decoupled Authentication is an authentication method whereby authentication can occur independent from

the Cardholder’s experience with the Merchant Application (i.e. outside the browser or 3-D Secure SDK) and

follows a similar workflow to Challenge Authentication.

In this workflow, the Merchant Application will send in an Authorize or AuthorizeAndCapture transaction

with the required 3-D Secure fields and two Decoupled Authentication fields set:

DecoupledRequestIndicator and DecoupledMaxTimeout. If DecoupledRequestIndicator is set,

DecoupledMaxTimeout is required to be set.

On the response, TransactionStatus will return as DecoupledAuthenticationRequired and there will be no

AcsUrl or ChallengeRequest to post.

The Merchant will periodically call ResubmitTransaction with DecoupledInfo fields set to search for

Decoupled Authentication results. The Merchant Application will poll for Decoupled Authentication results

until the DecoupledMaxTimeout limit has been reached. If the authentication results have not yet been

received and the timeout has not been exceeded, the message will read “Decoupled authentication has not

completed”. If the timeout has been exceeded, message will read “Decoupled Authentication timed out”.

Note that Decoupled Authentication is only available for the 3-D Secure 2.2 protocol version and is available

for Browser and Application-based workflows.

 Proprietary & Confidential 2

Request

 {
"$type":"AuthorizeAndCaptureTransaction,http://schemas.evosnap.com/CWS/v2.0/Transactions/Res
t",
"applicationProfileId":"496240",
"merchantProfileId":"AutoTest_Ecommerce_NGT_SBX_3DS_Original",
"sessionToken":null, "transaction":{
 "$type":"BankcardTransactionPro,http://schemas.evosnap.com/CWS/v2.0/Transactions/Bank
card/Pro",
 "Addendum":null,
 "ApplicationConfigurationData":null,
 "CustomerData":null,
 "InterchangeData":null,
 "IsOffline":false,
 "ReportingData":null,
 "TenderData":{

 "$type":"BankcardTenderDataPro,http://schemas.evosnap.com/CWS/v2.0/Transactions/Bankc
ard/Pro",
 "CardData":{
 "CardType":"MasterCard",
 "PAN":5307808167635130,
 "Expire":"0524",
 "CardholderName":"Cheryl Anderson"
 },
 "CardSecurityData":null,
 "CardholderIdType":"NotSet",
 "DeviceSerialNumber":null,
 "DeviceTypeIndicator":"NotSet",
 "EMVData":null,
 "EMVEncryptionKeyId":null,
 "EcommerceSecurityData":null,
 "EncryptionKeyId":null,
 "MACEncryptionKeyId":null,
 "PaymentAccountDataToken":null,
 "SecureEMVData":null,
 "SecureMACData":null,
 "SecurePaymentAccountData":null,
 "SwipeStatus":null,
 "TenderType":"NotSet",
 "TokenInformation":null,
 "VendorId":null,
 "VoucherApprovalCode":null,
 "VoucherNumber":null,
 "Wallet":null
 },
 "TransactionData":{
 "$type":"BankcardTransactionDataPro,http://schemas.evosnap.com/CWS/v2.0/Transactions/
Bankcard/Pro",
 "AccountType":"NotSet",
 "AlternativeMerchantData":null,
 "Amount":"800.00",
 "AmountTypeIndicator":"NotSet",
 "ApprovalCode":null,
 "BatchAssignment":null,
 "CampaignId":null,
 "CardOnFileInfo":null,
 "CardPresence":false,

 Proprietary & Confidential 3

 "CardholderAuthenticationEntity":"NotSet",
 "CashBackAmount":0.00,
 "ContractNumber":null,
 "CurrencyCode":"USD",
 "CustomerPresent":"NotSet",
 "DiscountData":null,
 "EBTType":"NotSet",
 "EmployeeId":"1234",
 "EntryMode":"Keyed",
 "FeeAmount":0.00,
 "Geolocation":null,
 "GoodsType":"NotSet",
 "IIASData":null,
 "InternetTransactionData":{
 "IpAddress":"127.0.0.1",
 "SessionId":"12345",
 "BrowserAcceptHeader":"1",
 "BrowserJavaEnabled":"true",
 "BrowserJavaScriptEnabled":"true",
 "BrowserLanguage":"en-US",
 "BrowserScreenColorDepth":"16",
 "BrowserScreenHeight":"400",
 "BrowserScreenWidth":"300",
 "BrowserTimeZone":"+000",
 "BrowserUserAgent":"2"
 },
 "InvoiceNumber":null,
 "Is3DSecure":true,
 "IsPartialShipment":false,
 "IsQuasiCash":false,
 "IsQuickPaymentService":false,
 "LaneId":null,
 "Level2Data":null,
 "LineItemDetails":null,
 "ManagedBilling":null,
 "OrderNumber":null,
 "PINlessDebitData":null,
 "PartialApprovalCapable":"NotSet",
 "ProductIndicator":null,
 "Reference":null,
 "ScoreThreshold":null,
 "SignatureCaptured":false,
 "SystemTraceAuditNumber":null,
 "TerminalId":null,
 "ThreeDSData":{
 "ChallengeWindowSize":"Size600X400",
 "MethodCompletionIndicator":"Completed",
 "DecoupledMaxTimeout":5,
 "DecoupledRequestIndicator":"true",
 "RequestorAuthMethod":"NotSet",
 "RequestorChallengeIndicator":"NotSet",
 "ServerTransactionId":"9af65057-f2de-4d62-81df-9ca71f0e25fa",
 "TransactionType":"NotSet",
 "PaymentTokenIndicator":"NotSet",
 "ProtocolVersion":"v2_2_0"
 },
 "ThreeDSMerchantData":null,
 "TipAmount":0.00,
 "TransactionCode":"NotSet",
 "TransactionDateTime":"2020-09-28T14:37:07.696696",

 Proprietary & Confidential 3

 "TransactionStatusIndicator":"NotSet"
 }
 },
 "workflowId":"3CF9E00003"
}

Data Only Authentication – MasterCard Only
Data Only Authentication offers higher transaction approval rates without the possibility of a Challenge. In

this workflow, the Authorization request is sent to the card scheme, and the card scheme performs risk

analysis using the 3-D Secure data provided. The card scheme is responsible for injecting risk assessment

data into the Authorization request, and forwards the request to the issuing bank for approval. Data Only

Authentication is only supported by MasterCard.

For Data Only Authentication, the Merchant Application will call Authorize or AuthorizeAndCapture with

BankcardTenderData/CardData/CardType set to Mastercard and

BankcardTransactionData/ThreeDSData/ProcessAsDataOnly set to true. The Snap* Platform will send along

the Authorize request as Data Only to the DSP for approval, and the response will contain the

ProcessedAsDataOnly field set as true.

 Proprietary & Confidential 3

Request

 {
 "$type": "AuthorizeAndCaptureTransaction,
http://schemas.evosnap.com/CWS/v2.0/Transactions/Rest",
"transaction":
 {
 "$type":
"BankcardTransactionPro,http://schemas.evosnap.com/CWS/v2.0/Transactions/Bankcard/Pro",
 "TenderData": {
 "$type":
"BankcardTenderDataPro,http://schemas.evosnap.com/CWS/v2.0/Transactions/Bankcard/Pro",
 "CardData": {
 "CardType":"Visa",
 "CardholderName": "Johnny Cardholder2",
 "PAN": "4024007108478834",
 "Expire":"1225",
 "ChipConditionCode":"9"
},
 "CardholderIdType":"NoEAuth"
 },
 "TransactionData": {
"$type":
"BankcardTransactionDataPro,http://schemas.evosnap.com/CWS/v2.0/Transactions/Bankcard/Pro",
 "CashBackAmount":"5.5",
 "EntryMode":"Keyed",
 "GoodsType":"DigitalGoods",
 "InternetTransactionData": {

 "IpAddress": "127.0.0.1",
 "SessionId": "12345",
 "BrowserAcceptHeader":"1",
 "BrowserJavaEnabled":"True",
 "BrowserJavaScriptEnabled":"True",
 "BrowserLanguage": "en-US",
 "BrowserScreenColorDepth": "16",
 "BrowserScreenHeight": "400",
 "BrowserScreenWidth": "300",
 "BrowserTimeZone":"+000",
 "BrowserUserAgent":"2"

 },
 "InvoiceNumber": "12345",
 "OrderNumber": "333",
 "SignatureCaptured":false,
 "TipAmount":1.24,
 "Amount":1.00,

 Proprietary & Confidential 3

 "CurrencyCode":"USD",
 "TransactionDateTime":"2014-10-06T20:49:14Z",
 "Reference": "referenceTest",
 "Is3DSecure":true,
 "CardholderAuthenticationEntity":"None",
 "CardPresence":false,
 "IsQuickPaymentService":false,
 "ThreeDSData": {

 "AuthenticationIndicator":"Payment",
 "ChallengeWindowSize":"0",
 "MethodCompletionIndicator":"Unavailable",
 "RequestorAuthMethod":"0",
 "RequestorChallengeIndicator":"0",
 "ServerTransactionId":"e44b34d5-6edc-4f21-a661-434393e4c7e1",
 "TransactionType":"0",
 "WhiteListStatus": 1,
 "PaymentTokenIndicator":"0",
 "SecureCorporatePayment":"0",
 "DecoupledMaxTimeout":"0",
 "DecoupledRequestIndicator":"0",
 "ProtocolVersion":"v2_2_0",
 "SupportsProtocolVersion1":false,
 "RequestorAuthTimestamp": "0001-01-01T00:00:00"

 },
 "ThreeRIIndicator":"NotSet",
 "TransactionStatusIndicator":"NotSet",
 "ProcessAsDataOnly": true
 },
 "IsOffline":false
 },
 "ApplicationProfileId":"781738",
 "MerchantProfileId": "CWS TestClient .30 New Profile"
}

Fallback to Non 3-D Secure Workflow
In this scenario, the Merchant Application calls Authorize or AuthorizeAndCapture with

BankcardTransactionData/ThreeDSData/ProcessAsDataOnly set to false,

BankcardTransactionData/ThreeDSMerchantData/SupportsDataOnly set to false (or

MerchantProfile/BankcardMerchantData/CardBrandIdentifiers_3DSecure[]/SupportsDataOnly is set to

false), and BankcardTransactionData/ThreeDSData/SupportsProtocolVersion1 set to false. The Snap*

Platform will send a response back to the Merchant Application with ErrorCode 9000 and ErrorDescription

stating “Unable to process as 3DSecure. Issuer does not support compatible protocol.” The Merchant can

then elect to abandon the transaction or retry the transaction, such as sending Resubmit3DSecure with

ProcessAsNon3DSecure set to true.

Attempts Server (as a Fallback)
If an Issuer does not support 2.0 authentication AND the Merchant does not support 1.0 authentication, the

Card Brand can instead support Attempts. Attempts is when the DS makes a decision about the transaction

without sending it to the ACS, as would happen in 3-D Secure 2.0 authentication. Attempts is processed the

same as 3-D Secure 2.0 authentication, and the authentication requests are the same.

 Proprietary & Confidential 3

The DS supports Attempts when:

> The PAN is enrolled in 3DS 2.0 (appears in the table CardRange with a 2.x protocol) AND

> The CardRange record’s optional field AcsInfoInd contains either “02” or is blank OR

> The PAN is not enrolled in 3DS 2.0 (does not appear in the table CardRange with a 2.x protocol)

If an authentication is attempted and the card is not in the card range, an authentication attempt will still be

made, likely resulting in TransactionStatus = AttemptsProcessingPerformed.

Resubmit with Challenge Response
After the Authorize or AuthorizeAndCapture response indicates a Challenge is required, the Merchant

Application must complete the Challenge workflow with the Cardholder.

To initiate the Challenge, the Merchant Application posts the value of the Challenge Request field to the

AcsURL that was returned on the Decline response. The ACS interacts with the Cardholder directly through a

visible iFrame created in the Cardholder’s browser and then sends the Challenge Response to the

Merchantdefined NotificationURL when the Cardholder-ACS interaction is completed. If more information is

needed about how the Challenge data is exchanged through this process, consult the appropriate card

schemes.

After the Merchant Application receives the Challenge Response, the application must call Resubmit with the

Challenge Response data returned from the ACS as a string. This is required to initiate the Authorization

part of 3-D Secure processing.

RequestUri https://api.cipcert.goevo.com/2.1.38/REST/TPS.svc/{serviced}

Method POST

Authentication Session token set as Username on Authentication header

Request

{
 "$type": "ResubmitTransaction, http://schemas.evosnap.com/CWS/v2.0/Transactions/Rest",
"transaction": {
 "$type":"Resubmit3DSecure,http://schemas.evosnap.com/CWS/v2.0/Transactions/Bankcard",
 "TransactionId": "DAC5CEA2AF0440D1B70B8BF5C15AC22A",
 "ChallengeResponse":
"eyJ0aHJlZURTU2VydmVyVHJhbnNJRCI6ImEzZjYwY2ExLTg2MGItNDhkYS1iZmQ1LWY1ZGExNGExOGE0YyIsImFjc1R
yYW5zSUQiO
iJhYzgzNTZjNS0xOWY1LTQ2ZTYtYjU3Ni0zYmRmYjI5NGRlN2YiLCJtZXNzYWdlVHlwZSI6IkNSZXMiLCJtZXNzYWdlV
mVyc2lvbiI
6IjIuMS4wIiwidHJhbnNTdGF0dXMiOiJZIn0=",
 "ResubmitReason": “Resubmission”,
 "ProcessAsNon3DSecure": false
 },
 "ApplicationProfileId": "781738",
 "MerchantProfileId": "merchant 123"
}

 Proprietary & Confidential 3

If the transaction was successfully 3-D Secure authenticated, the transaction will continue on to

Authorization.

If the transaction was not successfully 3-D Secure authenticated, the response will include the same

ThreeDSInformation indicating why the Authentication failed. Depending on the reason for failure, the

Merchant Application can choose to attempt that transaction again. This can be done by calling Resubmit

and setting Resubmit3DSecure.ProcessAsNon3DSecure to ‘true’ and for American Express, MasterCard

and Maestro 3DS transactions the AuthenticationOutage exemption can be claimed

 "ExemptionInfo": {

 "ExemptionControl": "AuthorizationFlow",

 "IsAuthenticationOutage": true

Out of Scope Transactions
3-D Secure 2.0 has presented options for Merchants to ensure the highest rate of Frictionless transaction

processing. They have provided two categories of transactions where a Challenge is unlikely to be required.

First, the benefit of Out of Scope transactions are offered. The Out of Scope identifier represents

transactions where the Cardholder is not available for Authentication. Because of this, there is little benefit

to performing 3-D Secure Authentication on these transactions and they are considered out of scope for

Authentication mandates.

Snap* Platform will bypass 3-D Secure Authentication and submit the transaction for Authorization if a

transaction is identified by the Merchant Application as an Out of Scope transaction. The Authorization will

identify the transaction as Out of Scope to achieve highest possibility of approval. There are four transaction

types that qualify as Out of Scope:

1. Merchant Initiated Transactions, which is existing Snap* functionality, are defined as Out of Scope of

Authentication since the merchant is initiating the payment on behalf of the cardholder. The initial

MIT transaction where the cardholder is setting up the recurrence will require Authentication. This is

the transaction where CardOnFile is First. ThreeRIIndicator will now be an additional required field

for 3-D Secure 2.0 MIT transactions. Snap* will identify MIT Out of Scope transactions as any

payment where:
o BankcardTransactionData/CardOnFileInfo/InitiatedBy is Merchant and o

 BankcardTransactionData/CardOnFileInfo/CardOnFile is Repeat and o

 BankcardTransactionData/ThreeDSData/ThreeRIIndicator is NotSet.

2. MOTO transactions, which is existing Snap* functionality, are currently defined on the Merchant

Profile. Snap* will identify MOTO transactions as any Merchant that is set up as a MOTO Merchant.

 Proprietary & Confidential 3

3. Inter-Regional transactions are defined as transactions where the Issuer or Acquirer are not based

in Europe are also considered exempt from SCA. Therefore, European businesses will be able to

accept payments from non-European shoppers without problem. Snap* will identify Inter-Regional

Out of Scope transactions as any payment where:

o BankcardTransactionData/ThreeDSData/IsInterRegionalTransaction is true.

4. Anonymous Prepaid Transactions are defined as transactions where the card is not tied to a bank

account or an individual, but rather to a sum of money, which can originate from cash. For these

transactions, the Cardholder is unknown to the Issuer. Visa and MasterCard have different rules for

handling authentication of Anonymous Prepaid cards:

Visa Anonymous Prepaid

For 3DS 2.2:

> Visa only supports prepaid anonymous exemption on 3DS 2.2 Authentication by setting

ThreeDSData/RequestorChallengeIndicator as NoChallengeRequestedRiskAnalysis.

> The response will return ThreeDSInformation.TransactionStatusReason as Other,

TransStatusReason as 87 (VisaExcludedFromAttempts) and the transaction will continue on to

Authorization with the returned authenticationValue and ECI value, or an ECI value of 7 if an

ECI value is not returned.

For 3DS 2.1:

> Visa does not accept any exemptions on 2.1. However, it is expected that Issuer ACS systems

and DS Attempts Server will recognize when the card is anonymous prepaid and will respond

in the same manner as 3DS 2.2. Merchants will send an Authorize with

ThreeDSData/ProtocolVersion as 2.1.

MasterCard Anonymous Prepaid

 Proprietary & Confidential 3

For 3DS 2.2:

> Merchants enrolled in 3DS 1.0 should retry with a 3DS 1.0 Authentication if the Authentication

response has Transaction Status A (Attempts). Merchants should send an Authorize

transaction with ThreeDSData/RequestorChallengeIndicator as

NoChallengeRequestedRiskAnalysis and ThreeDSData/SupportsProtocolVersion1 as true.

> Anonymous prepaid transactions sent by Merchants not enrolled in 3DS 1.0 with a

Transaction Status A (Attempts) will continue on to Authorization with ECI value 1 if no

exemption, otherwise an ECI value of 6. Merchants should send an Authorize transaction with

ThreeDSData/RequestorChallengeIndicator as NoChallengeRequestedRiskAnalysis and

ThreeDSData/SupportsProtocolVersion1 as false.

For 3DS 2.1:

> The RequestorChallengeIndicator field NoChallengeRequestedRiskAnalysis is available on the

3DS 2.1 messageExtension for MasterCard. It is expected that Issuer ACS systems and DS

Attempts Server will recognize the messageExtension and will respond in the same manner as

3DS 2.2.

> Merchants should send an Authorize transaction with ThreeDSData/ExemptionInfo/IsLowRisk

as true and ThreeDSData/SupportsProtocolVersion1 set determined by whether or not the

Merchant supports 3DS 1.0.

Since Out of Scope transactions are submitted for Authorization directly, the initial request does not require

the additional 3-D Secure 2.0 values. This is in the rare case the Issuer rejects the Out of Scope attempt –

Snap* will return a decline response to the Merchant Application with a status ‘65’ for both MasterCard and

Visa transactions. The Merchant Application can then make the decision if they would like to resubmit the

transaction without the Out of Scope values. In this case, the Merchant will submit a new Authorize or

AuthorizeAndCapture transaction with 3-D Secure Data set. This could result in a Challenge required and the

Merchant Application should be prepared to handle this scenario.

Out of Scope transactions are only available for 3-D Secure 2.0 transactions, but are available for both

MasterCard and Visa.

Exemptions
Snap* offers the benefit of Exemptions for the 3-D Secure as a Service workflow. Exemptions from the

Challenge exist for low risk transactions and enable a greater percentage of Frictionless flow transactions.

If a transaction qualifies as an exemption, the cardholder is available and known, but a request for no

challenge authentication is made. There are six types of exemptions that are defined below:

 Proprietary & Confidential 3

1. Whitelisted Merchants - (Visa, MasterCard, Maestro, JCB, American Express)
Cardholders can add Merchants to their whitelist of Merchants either during a Challenge flow or via

their online banking application. If the Merchant Application would like to request the Cardholder is

prompted to whitelist the Merchant, the following field must be set:

BankcardTransactionData/ThreeDSData/RequestorChallengeIndicator is

ChallengeRequestedWhitelist.

The Issuer keeps a database of whitelisted Merchants for each Cardholder. If a Merchant is

whitelisted, Authentication will not be required. Snap* will return a WhitelistStatus indicating if the

Merchant is whitelisted. Snap* will identify Whitelist exempted transactions as any

“AuthenticationQueryParameters": { “TransactionId": "8D5E9BC4B84B46A9A1693AC8BF1C4FF7",

“ChallengeResponse": "challenge response", }, payment where:

o BankcardTransactionData/ThreeDSData/ExemptionInfo/IsWhitelisted is true and o
BankcardTransactionData/ThreeDSData/RequestorChallengeIndicator is

NoChallengeRequestedWhitelist

2. Secure Corporate Payments (B2B) Transactions - (Visa, MasterCard, Maestro, JCB, American
Express)
For Secure Corporate (B2B) Transactions, Merchant Applications can indicate to the Issuer that the

payment is being initiated using a secure process or protocol – for example a physical card used

within a secure corporate procurement system or process. Snap will identify Secure Corporate

Payment exempted transactions as any payment where: o

 BankcardTransactionData/ThreeDSData/ExemptionInfo/IsSecureCorporate is true and

o BankcardTransactionData/ThreeDSData/RequestorChallengeIndicator is

NoChallengeRequestedRiskAnalysis

3. Low Value - (Visa, MasterCard, Maestro, JCB, American Express)
Any transaction under 30 Euros is exempt from 3-D Secure Authentication. After the fifth consecutive

Low Value exempted transaction, Authentication will again be required. Additionally, if the cumulative

transaction amount with Low Value exemption exceeds 100 Euros, Authentication will again be

required. The Exemption should be used as the last resort.

 o BankcardTransactionData/ThreeDSData/ExemptionInfo/IsLowValue is true.

4. Low Risk - (Visa, MasterCard, Maestro, JCB, American Express)
The initial release will not include any ability for Snap* to assess risk on behalf of the Merchant.

However, the Merchant Application may request the Low Risk exemption based on any risk

assessment they have done outside of the Snap* platform. Snap* will identify a Low Risk exempted

transactions as any payment where:

 o BankcardTransactionData/ThreeDSData/ExemptionInfo/IsLowRisk is true.

 Proprietary & Confidential 3

5. Recurring/Installment Payments - (Visa, MasterCard, Maestro, JCB)
MasterCard allows the Recurring Payment exemption to be set as a request for Exemption. Snap*

will identify a Recurring or Installment exempted transaction as any payment where:

o BankcardTransactionData/ThreeDSData/ExemptionInfo/IsRecurring is true.

6. Delegated SCA - (Visa, MasterCard, Maestro, JCB)
Delegated SCA is where the transaction is authenticated by a third-party Authenticator who is certified

to the individual card brands. Issuers and Acquirers are then able to delegate authentication to these

third-party Authenticators. Delegated Authenticators authenticate the Cardholder with two-factor

authentication. Authenticator categories include:

 Device Authenticators (usually biometrics on mobile or PC device)

 Wallet Authenticators (applications often take advantage of device

authenticators)
 Merchant Authenticators (Merchant Applications that meet SCA requirements as

part of normal processing)

Since many existing applications have been using these Authenticators since their creation, the

Delegated SCA Exemption is meant to eliminate the need for SCA to be performed twice (leading to

poor customer experience). For new applications, Delegated Authentication offers Merchant

Applications the ability to take full control of the Challenge flow leading to better customer

experience.

If the Merchant Application takes advantage of Delegated Authentication, they can identify the

Delegated SCA Exemption by setting: BankcardTransactionData/ExemptionInfo/IsDelegatedSCA is

true

 BankcardTransactionData/ThreeDSData/RequestorChallengeIndicator is

NoChallengeRequestedStrongAuth

7. Authentication Outage – (MasterCard, Maestro, JCB, American Express)

 American Express, MasterCard and Maestro supports the new exemption

AuthenticationOutage. This exemption can be claimed under the following circumstances:

 The Access Control Server (ACS) is unavailable.

 The Merchant cannot access the SafeKey service due to a ‘Merchant problem’.

 The Merchant cannot access the SafeKey service due to a ‘major outage’.

 "ExemptionInfo": {

 "ExemptionControl": "AuthorizationFlow",

 "IsAuthenticationOutage": true

The supported card brands have varying support for each of these Exemptions on the available protocols

and will be supported in the following way:

 Proprietary & Confidential 4

If the Merchant Application supports 2.1,

For Whitelisted and Secure Corporate transactions, MasterCard transactions will be sent directly for

Authorization with the Exemption identified. Note that MasterCard only supports Whitelisted 2.1

transactions when the ExemptionControl field is set as AuthorizationFlow. These Exemptions have a high

confidence of acceptance. For the remainder of the Exemptions listed above, MasterCard transactions will

be sent for Authentication with the Exemption identified.

For all Visa Exemptions, transactions will be sent directly for Authorization with the Exemption identified.

If the Merchant Application supports 2.2,

For Whitelisted and Secure Corporate transactions, MasterCard and Visa transactions will be sent directly

for Authorization with the Exemption identified. These Exemptions have a high confidence of acceptance.

For the remainder of the Exemptions listed above, MasterCard and Visa transactions will be sent for

Authentication with the Exemption identified.

Sending directly on the Authorization request has the benefit of eliminating the latency associated with 3-D

Secure processing. However, if the Merchant Application does not have a high degree of confidence that the

Exemption applies, there may be higher risk of decline as the Authorization does not include the rich 3-D

Secure Authentication data set. Additionally, sending directly on the Authorization request is not suitable

when there is a delay between Authentication and Authorization, as the Cardholder may no longer be

available in the event SCA is required.

The above are the Snap* defaulted workflows; however, the Merchant Application can override those at any

time by setting BankcardTransactionData/ThreeDSData/ExemptionInfo/ExemptionControlParam to

‘AuthorizationFlow’ or ‘AuthenticationFlow’ accordingly.

Submitting an Exempted Transaction Request
When submitting the initial Authorize or AuthorizeAndCapture request for a 3-D Secure 2.0 exempted

transaction, the Merchant Application is still required to populate all required and desired conditional 3-D

Secure 2.0 fields. This is in case the Issuer rejects the Exemption. The Merchant Application can set either

AuthorizationFlow or AuthenticationFlow as described above, otherwise the transaction will automatically

proceed with the Snap* default workflows.

In the Authorization workflow, Snap* sends the transaction directly for Authorization. If the Issuer rejects

the Exemption, Snap* will return a decline response to the Merchant Application indicating the

ReasonForNotHonoringExemption returned from the Issuer. The Merchant Application can then decide to

re-process the transaction without the Exemption by calling Resubmit.

In the Authentication workflow, Snap* sends the transaction for Authentication. If the Issuer rejects the

Exemption, a challenge will be required and the normal Challenge Authentication flow is executed.

If the issuer accepts the Exemption, Snap* sends the transaction for Authorization as an exempted

transaction from SCA. If at this time, the Issuer rejects the transaction with SCARequired, Snap* will send a

Decline response back to the Merchant Application indicating the ReasonForNotHonoringExemption. If the

 Proprietary & Confidential 4

Merchant wants to re-process the transaction without the Exemption, the Merchant Application must call

Resubmit. A Challenge can be expected here, and the Merchant Application and cardholder must perform

the Challenge to continue. After the Challenge is completed, the Merchant Application can call Resubmit

with the ChallengeResponse, and the transaction continues through the Authorization workflow.

Below is an example of a MasterCard Exemption Request transaction for 2.2.
 {
 "$type": "BankcardTransactionPro,
http://schemas.evosnap.com/CWS/v2.0/Transactions/Bankcard/Pro",
"CustomerData": null,
 "TenderData": {
 "$type": "BankcardTenderDataPro,
http://schemas.evosnap.com/CWS/v2.0/Transactions/Bankcard/Pro",
"EMVData": null,

 Proprietary & Confidential 4

 "CardData": {
 "CardType": "MasterCard",
 "CardholderName": "Spintax the Green",
 "PAN": "5307808167635130",
 "Expire": "0523"
 }
 },
 "TransactionData": {
 "Amount": 1.00,
 "CurrencyCode": "USD",
 "TransactionDateTime": "2020-05-28T08:01:38",
 "EntryMode": "Keyed",
 "InternetTransactionData": {
 "IpAddress": "127.0.0.1",
 "SessionId": "12",
 "BrowserAcceptHeader": "1",
 "BrowserJavaEnabled": "True",
 "BrowserJavaScriptEnabled": "True",
 "BrowserLanguage": "en-US",
 "BrowserScreenColorDepth": "1",
 "BrowserScreenHeight": "02",
 "BrowserScreenWidth": "02",
 "BrowserTimeZone": "+000",
 "BrowserUserAgent": "02"
 },
 "Is3DSecure": "true",
 "ThreeDSData": {
 "AuthenticationIndicator": "Payment",
 "ChallengeWindowSize": "Size390X400",
 "MethodCompletionIndicator": "Completed",
 "RequestorAuthMethod": "None",
 "RequestorChallengeIndicator": "ChallengeRequestedMandate",
 "ServerTransactionId": "DE7B9338-1AE9-49AD-8390-FFCDEAABB5D9",
 "TransactionType": "CheckAcceptance",
 "PaymentTokenIndicator": "NotSet",
 "AccountId": "",
 "DecoupledMaxTimeout": "0",
 "DecoupledRequestIndicator": "NotSet",
 "ProtocolVersion": "v2_2_0",
 "SupportsProtocolVersion1": "true",
 "RequestorAuthTimestamp": "2020-05-06T21:12:25.047Z",
 "ExemptionInfo": {
 "ExemptionControl": "AuthenticationFlow",
 "IsSecureCorporate": "true"
}
 },
}
}

Note that Out of Scope transactions and Exemptions are supported the same way for both Browser and

Application-Based workflows.

 Proprietary & Confidential 4

Authorization
After a successful Authentication process is complete, Snap* will automatically set the Authentication values

on the Authorize transaction and send it to the appropriate processor for Authorization. The response to

the Resubmit will contain the Authentication fields from above with an Authorization response. Below is an

example of a ‘Successful’ Authorization response in the Status field.

 Proprietary & Confidential 4

{
 "AdviceResponse": "NotSet",
 "Amount": 1.00,
 "Status": "Successful",
 "CommercialCardResponse": "NotSet",
 "CardType": "Visa",
 "StatusCode": "00",
 "ReturnedACI": "NotSet",
 "FeeAmount": 0.00,
 "StatusMessage": "Approved or completed successfully",
 "ApprovalCode": "068942",
 "TransactionId": "202e5ce7b4a44964b495202ff0e94cf4",
 "AVSResult": null,
 "OriginatorTransactionId": "9016",
 "BatchId": "",
 "ServiceTransactionId": "9016",
 "CVResult": "Match",
 "ServiceTransactionDateTime": {
 "Date": null,
 "Time": null,
 "TimeZone": null
 },
 "CardLevel": "",
 "Addendum": null,
 "DowngradeCode": "",
 "CaptureState": "ReadyForCapture",
 "MaskedPAN": "401200XXXXXX1112",
 "TransactionState": "Authorized",
 "PaymentAccountDataToken": "",
 "IsAcknowledged": false,
 "RetrievalReferenceNumber": "000018383732",
 "Reference": "",
 "Resubmit": "NotSet",
 "TransmissionNumber": "300280658176319|1006",
 "SettlementDate": "2020-10-06T00:00:00",
 "TransactionCode": "",
 "FinalBalance": null,
 "HostMessageId": "",
"OrderId": "7316",
 "Geolocation": null,
 "CashBackAmount": 0.00,
 "TerminalAccessToken": null,
 "PrepaidCard": "NotSet",
 "Expire": "1227",
 "ErrorType": null,
 "AuthorizationServerUrl": "",
 "PaymentAuthorizationRequest": "",
 "ProcessedAs3D": true,
 "EMVDataResponse": null,
 "Level3Added": "NotSet",
 "LastPANDigits": "1112",
 "BatchAmount": 0.00,
 "MessageAuthenticationCode": "",
 "TokenInformation": null,
 "ForcePostCode": "",
 "MerchantId": "400000000000001",
 "TerminalId": "40000002",

 Proprietary & Confidential 4

 "BankResponseCode": "",
 "InitialEncryptionKeys": null,
 "IsPartialApproval": false,
 "EBTAvailableBalance": {
 "CashAvailableBalance": 0.0,
 "SNAPAvailableBalance": 0.0
 },
 "IndustryType": "Ecommerce",
 "ThreeDSecureInformation": null,
 "ThreeDSInformation": {
 "TransactionStatus": "SuccessfullyAuthenticated",
 "AuthenticationECI": "05",
 "DSTransactionId": "00516f2d-8467-4f93-b4c1-329c73280381",
 "IsChallengeMandated": false,
 "ChallengeRequest": null,
 "ChallengeCancellationIndicator": null,
 "TransactionStatusReason": "NotSet",
 "AuthenticationValue": "QmFzZTY0RW5jb2RlZDIwYnl0ZXM=",
 "ACSTransactionId": "cba11eed-92ff-49bb-88ec-ca9165fffc31",
 "AuthenticationType": "Dynamic",
 "CardholderInformationText": null,
 "DSReferenceNumber": null,
 "ErrorCode": null,
 "ErrorDetail": null,
 "ErrorDescription": null,
 "AcsUrl": null,
 "MerchantId": null,
 "MessageCategory": "Payment",
 "ProtocolVersion": "v2_1_0",
 "ServerTransactionId": "b40791ac-d69e-4aa8-97ce-91ea99094ea6",
 "WhiteListStatus": "NotSet",
 "TokenResult": "7",
 "Protocol1": null,
 "SCARequired": false,
 "ReasonForNotHonoringExemption": "",
 "ExemptionControl": "NotSet",
 "SDKResponseInfo": {
 "ACSOperatorId": null,
 "ACSReferenceNumber": null,
 "ACSRenderingType": {
 "Interface": "NotSet",
 "UITemplate": "NotSet"
 },
 "ACSSignedContent": null,
 "AppId": null,
 "MaxTimeout": 0,
 "TransactionId": null
 },
 "AuthenticationTimestamp": "2020-10-06T18:16:00+00:00",
 "AuthenticationMethod": "Frictionless",
 "ServerReferenceNumber": null,
 "BroadcastInformation": null,
 "ProcessedAsDataOnly": false
 },
 "SystemTraceAuditNumber": "300280658176319",
 "MACTransmissionNumber": "" }

 Proprietary & Confidential 4

If the transaction was successfully processed as 3-D Secure by the Issuer, the TokenResult will indicate that

the transaction has not been downgraded to Not Authenticated by equating to the AuthenticationECI on the

request.

Alternatively, if the Issuer has downgraded the transaction to Not Authenticated during processing, the

TokenResult will indicate the downgrade by changing from the ECI on the request to the appropriate value.

Below lists the potential TokenResults from the supported card brands.

Card Brand Value Description

Visa 05 Authentication Successful

Visa 06 Authentication Attempted

Visa 07 Not Authenticated

MasterCard 210 Not Authenticated

MasterCard 211 Authentication Attempted

MasterCard 212 Authentication Successful

MasterCard 214 3-D Secure Data Share Only

MasterCard 216 Exemption Authentication Accepted

MasterCard 217 Authentication Successful for a Recurring

Transaction

Note: if Merchants are processing through the TRON front-end, they will not receive the above information from

the TokenResult field.

Follow-On Transactions
For Authorize and Capture and Authorize and Undo transaction workflows, Authentication only occurs on

the Authorize part of the transaction. However, the 3-D Secure Authentication information returned on the

Authorize response are required on the follow-on transaction requests, such as Capture, ReturnById, and

Undo.

Authorize and Capture or Authorize and Undo
In this scenario:

> The Merchant Application sends an Authorize transaction with required/conditional 3DS data and

BankcardTransactionData/Is3DSecure set to True.

 Proprietary & Confidential 4

> The Snap* Platform then processes the Authorize transaction with 3-D Secure Authentication and then

returns BankcardTransactionResponse/ThreeDSInformation.
> The Merchant Application then sends a Capture or Undo request against the previous Authorize

transaction with BankcardTransactionData/Is3DSecure set to False. No 3-D Secure Authentication occurs

on this transaction because the Is3DSecure flag is set to False. Note that if the Is3DSecure flag is not set,

it will default to False.

> The Snap Platform submits the Capture or Undo request.

> The front-end then maps the 3-D Secure Authentication data on the Capture request.

Card on File for Non-Payment Transactions
There are three possible options to manage a card on file without processing a payment:

1. A card can be added to the account

2. A card on file can be updated on the account.

3. Account data can be verified by Merchant Applications before processing a recurring payment.

Challenge Authentication is required when the Cardholder is managing the Cards on an account. Note that

all 3-D Secure 2.0 required and conditional fields still need to be sent for these non-payment transactions.

Adding Card on File without Processing Payment
Merchant Applications indicate a card is being added by setting BankcardTransactionData/CardOnFileInfo/

CardOnFile to First. Per SCA mandate, all First Merchant initiated transactions will require authentication.

Merchant Applications will call Verify with BankcardTransactionData/Is3DSecure as True and

BankcardTransactionData/CardOnFileInfo/InitiatedBy as Cardholder. Optional fields that can be set are

BankcardTransactionData/ThreeDSData/RequestorChallengeIndicator as NotSet or

ChallengeRequestedMandate and BankcardTransactionData/ThreeDSData/AuthenticationIndicator as

NotSet or AddCard. If sent as NotSet these fields will default to these values.

Finally, the Merchant Application will call Resubmit for the Challenge completion and will follow the

workflow detailed above.

Repeat Card on File Transactions

Updating Existing Card on File without Processing Payment
If the card on file is updated by the cardholder, then a new Challenge is required. Again, Merchant

Applications will call Verify with BankcardTransactionData/Is3DSecure as True,

BankcardTransactionData/CardOnFileInfo/ CardOnFile as Repeat,

BankcardTransactionData/CardOnFileInfo/InitiatedBy as Merchant or Cardholder and

BankcardTransactionData/ThreeDSData/AuthenticationIndicator as MaintainCard, and Amount as Zero.

Repeat Card on File transactions require a reference to the First Card on File transaction. Whether the

Merchant Application is using Snap* tokenization or Third Party Tokenization, the Repeat Card on File

 Proprietary & Confidential 4

transaction will require the appropriate reference field to be set. See the Tokenization section below for

more details.

Optionally, BankcardTransactionData/ThreeDSData/ RequestorChallengeIndicator can be set as NotSet or

ChallengeRequestedMandate.

If BankcardTransactionData/CardOnFileInfo/InitiatedBy is set to Merchant, a Challenge is not mandated and

the RequestorChallengeIndicator will not default to ChallengeRequestedMandate as it will if InitiatedBy is

Cardholder.

Merchant Verification
Merchant applications may wish to verify account data prior to processing recurring payments.

Because the merchant is requesting account verification and the cardholder is not in session, Requestor

Initiated (3RI) authentication is invoked, meaning a Challenge will not be requested.

Merchant applications will call Verify with BankcardTransactionData/Is3DSecure as True,

BankcardTransactionData/CardOnFileInfo/CardOnFile as Repeat, BankcardTransactionData/CardOnFileInfo/

InitiatedBy as Merchant, BankcardTransactionData/ThreeDSData/AuthenticationIndicator as MaintainCard,

BankcardTransactionData/ThreeDSData/ThreeRIIndicator as MaintainCard, and Amount as Zero.

Repeat Card on File transactions require a reference to the First Card on File transaction. Whether the

Merchant Application is using Snap* tokenization or Third Party Tokenization, the Repeat Card on File

transaction will require the appropriate reference field to be set. See the Tokenization section below for

more details.

Card on File for Payment Transactions
There are several possible options to manage a card on file while processing a payment:

1. A card on file can be added as part of a single payment.

2. A card on file can be added as part of the first recurring payment.

3. Merchants can initiate a transaction for a recurring payment.

4. A cardholder can initiate a transaction for a recurring payment.

5. A cardholder can update the card on file while processing a payment.

Adding a Card on File as Part of a Single Payment
Merchant Applications indicate a card is being added by setting BankcardTransactionData/CardOnFileInfo/

CardOnFile to First. Per SCA mandate, all First Merchant initiated transactions will require authentication.

Merchant Applications will submit an Authorize or AuthorizeAndCapture transaction with

BankcardTransactionData/Is3DSecure as True, BankcardTransactionData/ThreeDSData/ProtocolVersion as

2.1 or 2.2, BankcardTransactionData/CardOnFileInfo/InitiatedBy as Cardholder and with an Amount greater

than zero. Optional fields that can be set are BankcardTransactionData/ThreeDSData/

RequestorChallengeIndicator as NotSet or ChallengeRequestedMandate and BankcardTransactionData/

ThreeDSData/AuthenticationIndicator as NotSet or AddCard. If sent as NotSet these fields will default to

these values.

 Proprietary & Confidential 4

Finally, the Merchant Application will call Resubmit for the Challenge completion and will follow the

workflow detailed above.

Repeat Card on File Transactions

Updating Card on File as Part of the First Recurring Payment
This process follows a similar workflow as adding a card on file for a single payment, with one exception.

Merchant Applications will submit an Authorize or AuthorizeAndCapture transaction with

BankcardTransactionData/CardOnFileInfo/ CardOnFile as Repeat, BankcardTransactionData/Is3DSecure as

True, BankcardTransactionData/ThreeDSData/ProtocolVersion as 2.2,

BankcardTransactionData/CardOnFileInfo/InitiatedBy as Cardholder and with an Amount greater than zero.

Merchant Applications must also set BankcardTransactionPro/BankcardInterchangeData/BillPayment as

Recurring to indicate this is a recurring transaction.

Repeat Card on File transactions require a reference to the First Card on File transaction. Whether the

Merchant Application is using Snap* tokenization or Third Party Tokenization, the Repeat Card on File

transaction will require the appropriate reference field to be set. See the Tokenization section below for

more details.

Optionally, BankcardTransactionData/ThreeDSData/ RequestorChallengeIndicator can be set as NotSet or

ChallengeRequestedMandate.

Finally, the Merchant Application will call Resubmit for the Challenge completion and will follow the

workflow detailed above.

Merchant Initiated Transaction
In this workflow, the Merchant application processes a recurring transaction and wants liability to shift to

the Issuer. This workflow is only supported for protocol version 2.2. Merchant Applications will submit an

Authorize or AuthorizeAndCapture transaction with BankcardTransactionData/CardOnFileInfo/

CardOnFile as Repeat, BankcardTransactionData/Is3DSecure as True,

BankcardTransactionData/ThreeDSData/ProtocolVersion as 2.2,

BankcardTransactionData/CardOnFileInfo/InitiatedBy as Cardholder and with an Amount greater than zero.

Merchant Applications must also set BankcardTransactionPro/BankcardInterchangeData/BillPayment as

Recurring to indicate this is a recurring transaction.

Merchant Applications must also set BankcardTransactionData/CardOnFileInfo/InitiatedBy as Merchant,

BankcardTransactionData/ThreeDSData/PaymentTokenIndicator as True,

BankcardTransactionData/ThreeDSData/ThreeRIIndicator as Recurring,

BankcardTransactionPro/BankcardInterchangeData/RecurringExpirationDate as the recurring payment

expiration date, and BankcardTransactionPro/BankcardInterchangeData/RecurringFrequency as the

minimum number of days between authorizations.

As before, Repeat Card on File transactions require a reference to the First Card on File transaction. Whether

the Merchant Application is using Snap* tokenization or Third Party Tokenization, the Repeat Card on File

transaction will require the appropriate reference field to be set. See the Tokenization section below for more

details.

 Proprietary & Confidential 5

If BankcardTransactionData/CardOnFileInfo/InitiatedBy is set to Merchant, a Challenge is not mandated and

the RequestorChallengeIndicator will not default to ChallengeRequestedMandate as it will if InitiatedBy is

Cardholder.

Cardholder Initiated Transactions
For Cardholder Initiated transactions, the Merchant Application is responsible for

setting BankcardTransactionData/ThreeDSData/AccountInfo, which is optional but suggested. This

additional information allows the ACS to make risk based decisions with no direct interaction with

cardholder for tokenized transaction.

Cardholder Initiated Transactions using Snap* Token
Merchant Applications using a Snap* token will submit an Authorize or AuthorizeAndCapture transaction with

BankcardTransactionData/CardOnFileInfo/CardOnFile as Repeat, BankcardTransactionData/Is3DSecure as

True, BankcardTransactionData/CardOnFileInfo/InitiatedBy as Cardholder,

TenderData/PaymentAccountDataToken as the Snap Token, and an Amount greater than zero.

As before, Repeat Card on File transactions require a reference to the First Card on File transaction. Whether

the Merchant Application is using Snap* tokenization or Third Party Tokenization, the Repeat Card on File

transaction will require the appropriate reference field to be set. See the Tokenization section below for more

details.

Because the card on file is being updated by the cardholder, a new Challenge is required. The Merchant

Application will call Resubmit for the Challenge completion and will follow the workflow detailed above.

Cardholder Initiated Transactions using Third Party Token

Merchant Applications using a third party token will submit an Authorize or AuthorizeAndCapture

transaction with BankcardTransactionData/CardOnFileInfo/CardOnFile as Repeat,

BankcardTransactionData/Is3DSecure as True, BankcardTransactionData/CardOnFileInfo/InitiatedBy as

Cardholder, BankcardTenderData/TokenInformation as the third party token information, and an Amount

greater than zero.

As before, Repeat Card on File transactions require a reference to the First Card on File transaction. Whether

the Merchant Application is using Snap* tokenization or Third Party Tokenization, the Repeat Card on File

transaction will require the appropriate reference field to be set. See the Tokenization section below for more

details.

Because the card on file is being updated by the cardholder, a new Challenge is required. The Merchant

Application will call Resubmit for the Challenge completion and will follow the workflow detailed above.

Cardholder Updates Card on File as Part of Processing Payment
In this workflow, the Cardholder updates the card on file while processing a payment. Merchant

Applications will submit an Authorize or AuthorizeAndCapture transaction with

BankcardTransactionData/ThreeDSData/ProtocolVersion as 2.1 or 2.2,

BankcardTransactionData/CardOnFileInfo/CardOnFile as Repeat, BankcardTransactionData/Is3DSecure as

True, BankcardTransactionData/CardOnFileInfo/InitiatedBy as Cardholder, and an Amount greater than

zero. Optional fields that can be set are

 Proprietary & Confidential 5

BankcardTransactionData/ThreeDSData/RequestorChallengeIndicator as NotSet or

ChallengeRequestedMandate and BankcardTransactionData/ThreeDSData/AuthenticationIndicator as

NotSet or MaintainCard.

As before, Repeat Card on File transactions require a reference to the First Card on File transaction. Whether

the Merchant Application is using Snap* tokenization or Third Party Tokenization, the Repeat Card on File

transaction will require the appropriate reference field to be set. See the Tokenization section below for more

details.

Because the card on file is being updated by the cardholder, a new Challenge is required. The Merchant

Application will call Resubmit for the Challenge completion and will follow the workflow detailed above.

Tokenization

Merchants Using Snap* Tokenization

For Merchant Applications using Snap* tokenization, Repeat Card on File transactions must be tokenized

transactions with TenderData/PaymentAccountDataToken set to the PaymentAccountDataToken returned

on the First Card on File transaction response.

Merchants Using Third Party Tokenization

The Merchant Application receives the reference ID on their First Card on File transaction response as

TransmissionNumber. On a Repeat Card on File transaction, the Merchant Application must submit

CardOnFileInfo/OriginalTransactionId as the TransmissionNumber from the First Card on File transaction.

Field length for TransmissionNumber is expected to be 20 characters.

Best Practices
It is highly recommended that Merchant Applications not set AuthenticationIndicator to values other than

MaintainCard and VerifyCardholder. This is to avoid setting it incorrectly and the transaction being rejected

based on validation. Snap Platform will default AuthenticationIndicator for all use cases outside of

MaintainCard and VerifyCardholder.

For merchants that have purchased tokenization (i.e. a Snap PaymentAccountDataToken is returned on the

response), all transactions with card data will be defaulted to CardOnFile First. If the Merchant Application

specifically sets AuthenticationIndicator to Payment, a validation error will occur as CardonFile First

transactions must have AuthenticationIndicator set to AddCard. If the Merchant Application does not

specifically set the AuthenticationIndicator, Snap Platform will default the correct value and no validation

error will occur.

Note that Card on File transactions are supported the same way for both Browser and Application-Based

workflows.

 Proprietary & Confidential 5

Trigger Values

TokenResult Triggers
MasterCard: (BankcardTransaction/TenderData/CardType = “MasterCard” or
“Maestro”)
All ecommerce tests for MasterCard and Maestro will now return the field
BankcardTransactionResponse/TokenResult, regardless of the 3DS version used. Any transaction that does not
include the specific trigger values listed below will return 210.

 Triggers for 211
o 1.0 - BankcardTransaction/TenderData/EcommerceSecurityData/TokenIndicator =

“AttemptedServiceUnavailable” or “AttemptedCardUnsupported”

o 2.x BankcardTransaction/TenderData/EcommerceSecurityData/AuthenticationECI = "01"

 Triggers for 212

o 1.0 - BankcardTransaction/TenderData/EcommerceSecurityData/TokenIndicator =

“UCAFWithData”

o 2.0 - BankcardTransaction/TenderData/EcommerceSecurityData/AuthenticationECI = "02”

 Triggers for 216 (2.x only)

o 2.x - BankcardTransaction/TenderData/EcommerceSecurityData is not present and

BankcardTransaction/TransactionData/ThreeDSData/ExemptionInfo is present

 Triggers for 217 (not 3DS version dependent)

o BankcardTransactionPro/InterchangeData/BillPayment = Recurring and

BankcardTransaction/TransactionData/CardOnFileInfo/CardOnFile = Repeat

 Triggers for 221

o Wallet without 3DS - BankcardTransaction/TenderData/EcommerceSecurityData is not present

and BankcardTransaction/TenderData/TokenInformation/WalletECI = “01”

 Triggers for 222

o Wallet without 3DS - BankcardTransaction/TenderData/EcommerceSecurityData is not present

and BankcardTransaction/TenderData/TokenInformation/WalletECI = “02”

Visa: (BankcardTransaction/TenderData/CardType = “Visa” or “Electron”)
All ecommerce tests for Visa and Electron will now return the field BankcardTransactionResponse/TokenResult.
Any transaction that does not include the specific trigger values listed below will return 7.
 Triggers for 6

o 1.0 - BankcardTransaction/TenderData/EcommerceSecurityData/TokenIndicator =

“AttemptedServiceUnavailable” or “AttemptedCardUnsupported”

o 2.x - BankcardTransaction/TenderData/EcommerceSecurityData/AuthenticationECI = "06"

 Triggers for 5

 Proprietary & Confidential 5

SCA Challenge Soft Decline Triggers
• All of the triggers listed in this section will return BankcardTransactionResponse/StatusCode = “65”,

BankcardTransactionResponse/StatusMessage = “SCA Required” and

BankcardTransactionResponse/ThreeDSInformation/SCARequired = "true".

• BankcardTransaction/TenderData/CardType can be Visa, Electron, MasterCard, Maestro or

AmericanExpress.

• BankcardMerchantData/IndustryType must = “Ecommerce”.

A transaction that includes ThreeDSData/InternalSCARequired = “true” will bypass all triggers and return an

approved response. This field indicates that SCA has already been performed and the workflow is on the

second pass into sandbox

Generic soft decline for non-authenticated ecommerce transaction

with no exclusions or exemptions
This must be a normal ecommerce transaction with no 3DS, no exemptions, no exclusions and no CardOnFile
data present.

 BankcardTransaction/TransactionData/Amount = “452.00”

Low Value Exemption soft decline
 BankcardTransaction/TransactionData/ThreeDSData/ExemptionInfo/IsLowValue = “true” and
BankcardTransaction/TransactionData/Amount = “1012.00” or “1014.00”

Low Risk Exemption soft decline
 BankcardTransaction/TransactionData/ThreeDSData/ExemptionInfo/IsLowRisk = “true” and

BankcardTransaction/TransactionData/Amount = “1016.00” or “1018.00”

Recurring Exemption soft decline
 BankcardTransaction/TransactionData/ThreeDSData/ExemptionInfo/IsRecurring = “true” and

BankcardTransaction/TransactionData/Amount = “1020.00” or “1022.00”

Delegated SCA Exemption soft decline
 BankcardTransaction/TransactionData/ThreeDSData/ExemptionInfo/IsDelegatedSCA = “true” and

BankcardTransaction/TransactionData/Amount = “1024.00” or “1026.00”

Whitelisted Exemption soft decline
 BankcardTransaction/TransactionData/ThreeDSData/ExemptionInfo/IsWhitelisted = “true” and

BankcardTransaction/TransactionData/Amount = “1004.00” or “1006.00”

 Proprietary & Confidential 5

Secure Corporate Exemption soft decline
 BankcardTransaction/TransactionData/ThreeDSData/ExemptionInfo/IsSecureCorporate = “true” and

BankcardTransaction/TransactionData/Amount = “1008.00” or “1010.00”

Authentication Outage Exemption soft decline
 BankcardTransaction/TransactionData/ThreeDSData/ExemptionInfo/IsAuthenticationOutage = “true”

and BankcardTransaction/TransactionData/Amount = “1011.00” or “1013.00”

SCA Exclusion Soft Decline Triggers
There are 4 total exclusion triggers but the one for MOTO transactions behave differently than the

Ecommerce transactions.

 For MOTO, BankcardTransactionResponse/StatusCode = “65” and the

BankcardTransactionResponse/StatusMessage will be different for Visa, American Express and MasterCard.

Visa/Electron and American Express transactions will return “Reserved for future Postilion use” and

MasterCard/Maestro transactions will return “Exceeds withdrawal frequency”.

BankcardTransactionResponse/ThreeDSInformation/SCARequired will NOT be set.

The 3 Ecommerce triggers will all return BankcardTransactionResponse/StatusCode = “65”

 BankcardTransactionResponse/StatusMessage = “SCA Required” and

BankcardTransactionResponse/ThreeDSInformation/SCARequired = "true".

 BankcardTransaction/TenderData/CardType can be Visa, Electron, MasterCard, Maestro or

AmericanExpress

 BankcardMerchantData/IndustryType must = “Ecommerce” or “MOTO”.

Merchant Initiated Repeat Card On File soft decline
 BankcardMerchantData/IndustryType = “Ecommerce” and

BankcardTransaction/TransactionData/CardOnFileInfo/InitiatedBy = “Merchant” and

BankcardTransaction/TransactionData/CardOnFileInfo/CardOnFile = “Repeat” and

BankcardTransaction/TransactionData/Amount = “700.00”.

IsInterRegionalTransaction soft decline
 BankcardMerchantData/IndustryType = “Ecommerce” and

BankcardTransaction/TransactionData/ThreeDSData/IsInterRegionalTransaction = “true” and

BankcardTransaction/TransactionData/Amount = “720.00”.

IsAnonymousPrepaidTransaction soft decline
 BankcardMerchantData/IndustryType = “Ecommerce” and

BankcardTransaction/TransactionData/ThreeDSData/ IsAnonymousPrepaidTransaction = “true” and

BankcardTransaction/TransactionData/Amount = “730.00”.

 Proprietary & Confidential 5

MOTO hard decline
 BankcardMerchantData/IndustryType = “MOTO” and BankcardTransaction/TransactionData/Amount

= “710.00”.

3DS V1 Decommisioning

Beginning in October of 2022, the 3 major card brands will no longer support 3DS Version 1. While the

dates for each card brand are not the same, EVO will no longer be supporting 3DS V1 starting October 14th,

2022.

De-commissioning dates by card brand:
 American Express: 14 October 2022

 Discover: 14 October 2022

 Visa: 15 October 2022

 MasterCard: 18 October 2022

 Maestro: 18 October 2022

 JCB: 18 October 2022

